, Volume 46, Issue 3, pp 457–462 | Cite as

Photosynthesis, chlorophyll fluorescence, and antioxidant enzyme responses of invasive weed Mikania micrantha to Bemisia tabaci infestation

Original Papers


In a glasshouse, Bemisia tabaci infestation largely reduced response of photosynthesis to irradiance and CO2 concentration of Mikania micrantha compared with the non-infested control (C) ones. The maximum irradiance-saturated photosynthetic rate (P max) and saturation irradiance (SI) of the infested M. micrantha were only 21.3 % and 6.5 % of the C-plants, respectively. B. tabaci infestation led to the reduction of contents of chlorophyll and carotenoids in M. micrantha, which was accompanied with the decrease of actual photosystem 2 (PS2) efficiency (ΦPS2), efficiency of excitation energy capture by open PS2 reaction centres (Fv′/Fm′), electron transport rate (ETR), and photochemical quenching (qP). Moreover, superoxide dismutase and catalase activities significantly decreased while proline and glutathione contents significantly increased in infested M. micrantha. Hence B. tabaci infestation not only induced direct damage of photosynthetic apparatus but also altered the antioxidant enzymes activities in M. micrantha, which might as consequences accelerate senescence of this weed.

Additional key words

carotenoids catalase chlorophyll fluorescence electron transport rate glutathione photochemical quenching photosystem 2 efficiency proline superoxide dismutase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bellows, A.N., Jr., Perring, T.M., Gill, R.J., Headrick, D.H.: Description of a species of Bemisia (Homoptera: Aleyrodidae).-Ann. entomol. Soc. Amer. 8: 195–206, 1994.Google Scholar
  2. Bernays, E.A., Chapman, R.F. (ed.): Host-Plant Selection by Phytophagous Insects.-Chapman and Hall, London 1994.Google Scholar
  3. Brennan, R.M., Jefferies, R.A.: The use of chlorophyll fluorescence in assessment of low temperature hardiness in blackcurrant (Ribes nigrum L.).-Ann. appl. Biol. 117: 667–672, 1990.CrossRefGoogle Scholar
  4. Caemmerer, S. von, Evans, J.R., Hudson, G.S., Andrews, T.J.: The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco.-Planta 195: 88–97, 1994.CrossRefGoogle Scholar
  5. Costa, H.S., Ullman, D.E., Johnson, M.W., Tabashnik, B.E.: Squash silverleaf symptoms induced by immature, but not the adult, Bemisia tabaci.-Phytopathology 83: 763–766, 1993.CrossRefGoogle Scholar
  6. Ellman, G.L.: Tissue sulfhydryl groups.-Arch. Biochem. Biophys. 82: 70–77, 1959.PubMedCrossRefGoogle Scholar
  7. Farquhar, G.D., Caemmerer, S. von: Modelling of photosynthetic response to environmental conditions.-In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology II. Pp. 549–587. Springer-Verlag, Berlin-Heidelberg-New York 1982.Google Scholar
  8. Farquhar, G.D., Caemmerer, S. von, Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation on leaves of C3 species.-Planta 149: 78–90, 1980.CrossRefGoogle Scholar
  9. Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.-Biochim. biophys. Acta 990: 87–92, 1989.Google Scholar
  10. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase II. Purification and quantitative relationship with water-soluble protein in seedings.-Plant Physiol. 59: 315–318, 1977.PubMedCrossRefGoogle Scholar
  11. Haile, F.J., Higley, L.G.: Changes in soybean gas-exchange after moisture stress and spider mite injury.-Environ. Entomol. 32: 433–440, 2003.CrossRefGoogle Scholar
  12. Halliwell, B., Chirico, S.: Lipid peroxidation: its mechanism, measurement, and significance.-Amer. J. clin. Nutr. 57: 715S–725S, 1993.PubMedGoogle Scholar
  13. Han, Z.G., Lei, L.M., Han, B.P.: [In situ monitoring of chlorophyll fluorescence using PAM fluorometer.]-Ecol. Sci. 3: 246–249, 2005. [In Chin.]Google Scholar
  14. Hao, Z.B., Cang, D., Xu, Z., Zhang, D. (ed.): [Plant Physiology Experiments.]-Pp. 104–106. Harbin Institute Technology Press, Harbin 2004. [In Chin.]Google Scholar
  15. Harley, P.C., Sharkey, T.D.: An improved model of C3 photosynthesis at high CO2: Reversed sensitivity explained by lack of glycerate reentry into the chloroplast O2.-Photosynth. Res. 27: 169–178, 1991.Google Scholar
  16. Holm, L.G., Plucknett, D.L., Pancho, J.V., Herberger, J.P. (ed.): The World’s Worst Weeds: Distribution and Biology.-Pp. 320–327. University Press of Hawaii, Honolulu 1977.Google Scholar
  17. Lambers, H., Chapin, F.S., III, Pons, T.L. (ed.): Plant Physiological Ecology.-Springer-Verlag, New York 1998.Google Scholar
  18. Lin, Z.F., Li, S.S., Lin, G.Z., Zheng, G.C., Guo, J.Y.: [Superoxide dismutase activity and lipid peroxidation in relation to senescence of rice leaves.]-Acta bot. sin. 6: 605–615, 1984. [In Chin.]Google Scholar
  19. Muñiz, M.: Host suitability of two biotypes of Bemisia tabaci on some common weeds.-Entomol. exp. appl. 95: 63–70, 2000.CrossRefGoogle Scholar
  20. Parker, C.: The Mikania problem.-Proc. amer. nat. Soc. 18: 312–315, 1972.Google Scholar
  21. Perring, T.M., Cooper, A.D., Rodríguez, R.J., Farrar, C.A., Bellows, T.S., Jr.: Identification of a whitefly species by genomic and behavioural studies.-Science 259: 74–77, 1993.PubMedCrossRefGoogle Scholar
  22. Sances, F.V., Toscano, N.C., Hoffmann, M.P., Lapre, L.F., Johnson, M.W., Baily, J.B.: Physiological responses of avocado leaves to avocado brown mite feeding injury.-Environ. Entomol. 11: 516–518, 1982.Google Scholar
  23. Souza, R.P., Machado, E.C., Silva, J.A.B., Lagôa, A.M.M.A., Silveira, J.A.G.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery.-Environ. exp. Bot. 51: 45–56, 2004.CrossRefGoogle Scholar
  24. Tanaka, K., Suda, Y., Kondo, N., Sugahara, K.: O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts.-Plant Cell Physiol. 26: 1425–1431, 1985.Google Scholar
  25. Uritanic, I.: Biological host response to infestation.-Progr. Phytochem. 5: 59–63, 1980.Google Scholar
  26. Xu, R.M.: The occurrence and distribution of Bemisia in China.-In: Gerling, D., Mayer, R.T. (ed.): Bemisia 1995: Taxonomy, Biology, Damage, Control and Management. Pp. 125–131. Intercept, Andover 1996.Google Scholar
  27. Yassin, M., Bendixen, L.E.: Weed hosts of the cotton whitefly Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae).-Ohio agr. Res. Develop. Center Res. Bull. 1114: 1–10, 1982.Google Scholar
  28. Zalom, F.G., Castane, C., Gabara, R.: Selection of some winter spring vegetable crop hosts by Bemisia argentifolii (Homoptera: Aleyrodidae).-J. econ. Entomol. 88: 70–76, 1995.Google Scholar
  29. Zan, Q.J., Wang, Y.J., Wang, B.S., Liao, W.B., Li, M.G.: [The distribution and harm of the exotic weed Mikania micrantha.]-Chin. J. Ecol. 6: 58–61, 2000. [In Chin.]Google Scholar
  30. Zeng, S.-X., Wang, Y.-R., Liu, H.-X.: [Some enzymatic reactions related to chlorophyll degradation in cucumber cotyledons under chilling in the light.]-Acta phytophysiol. sin. 17: 177–182, 1991. [In Chin.]Google Scholar
  31. Zhang, L.L., Han, S.C., Li, Z.G., Liu, N., Li, L.Y., Luo, L.F., Peng, T.X., Liu, W.H.: Effects of the infestation by Actinote thalia pyrrha (Fabricius) on the physiological indexes of Mikania micrantha leaves.-Acta ecol. sin. 26: 1330–1336, 2006.CrossRefGoogle Scholar
  32. Zhou, Y.: [The list of whiteflies in China.]-China Entomol. 3: 1–18, 1949. [In Chin.]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Ecology, South China Botanical GardenChinese Academy of SciencesGuangzhouPR China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingPR China

Personalised recommendations