, Volume 45, Issue 3, pp 385–391 | Cite as

Physiological response of eight Mediterranean maquis species to low air temperatures during winter

  • L. Varone
  • L. Gratani
Original Papers


We analyzed the physiological response of the Mediterranean evergreen species (Arbutus unedo L., Cistus incanus L., Erica arborea L., Erica multiflora L., Phillyrea latifolia L., Pistacia lentiscus L., Quercus ilex L., and Rosmarinus officinalis L.) to winter low air temperatures. In occasion of two cold events, in February 2005 (T min = 1.8 °C), and January 2006 (T min = 3.1 °C and minimum T air = −0.40 °C during the nights preceding the measurements), R. officinalis, C. incanus, and E. multiflora had the highest net photosynthetic rate (P N) decrease (73 %, mean value) with respect to the winter P N maximum, followed by A. unedo (62 %), P. latifolia and P. lentiscus (54 %, mean value), E. arborea (49 %), and Q. ilex (44 %). Among the considered species, Q. ilex was able to maintain P N near the maximum for 150 min during the day, A. unedo, P. lentiscus, E. arborea, P. latifolia, E. multiflora, and R. officinalis for 60 min, and C. incanus for 30 min. The calculated mean winter daily P N ranged from 7.9±0.6 (Q. ilex) to 2.8±0.5 (R. officinalis) µmol(CO2) m−2 s−1. During the study period, chlorophyll (Chl) content decreased by 36 % on an average in the two cold events, and the carotenoid (Car) to Chl ratio increased by 133 % in Q. ilex, having the highest value in January 2006. Principal component analysis underlined the highest cold resistance of Q. ilex by high P N and high Car/Chl ratio. On the contrary, R. officinalis and C. incanus had the lowest cold resistance by the highest P N decrease and the lowest Car/Chl (C. incanus). Thus, winter stress could be an additional limitation to Mediterranean evergreen species production, and the capacity of the species to maintain P N near 90–100 % during winter is determinant for biomass accumulation.

Additional key words

carotenoids chlorophyll cold events evergreen species photosynthesis stomatal conductance 







stomatal leaf conductance


daily maximum stomatal leaf conductance


net photosynthetic rate


daily maximum photosynthetic rate


photosynthetically active radiation


air temperature


monthly mean minimum air temperature


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W.W., III, Demmig-Adams, B.: The xanthophyll cycle and sustained thermal energy dissipation activity in Vinca minor and Euonymus kiautschovicus in winter.-Plant Cell Environ. 18: 117–127, 1995.CrossRefGoogle Scholar
  2. Antolín, M.C., Hekneby, M., Sánchez-Díaz, M.: Contrasting responses of photosynthesis at low temperatures in different annual legume species.-Photosynthetica 43: 65–74, 2005.CrossRefGoogle Scholar
  3. Ball, M.C., Hodges, V.S., Laughlin, G.P.: Cold-induced photo-inhibition limits regeneration of snow gum at tree-line.-Funct. Ecol. 5: 663–668, 1995.CrossRefGoogle Scholar
  4. García-Plazaola, J.L., Artetxe, U., Becerill, J.M.: Diurnal changes in antioxidant and carotenoid composition in the Mediterranean sclerophyll tree Quercus ilex (L.) during winter.-Plant Sci. 143: 125–133, 1999.CrossRefGoogle Scholar
  5. García-Plazaola, J.L., Hernández, A., Becerill, J.M.: Photo-protective responses to winter stress in evergreen Mediterranean ecosystems.-Plant Biol. 2: 530–535, 2000.CrossRefGoogle Scholar
  6. Gratani, L., Bombelli, A.: Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus.-Environ. exp. Bot. 43: 141–153, 2000.CrossRefGoogle Scholar
  7. Gratani, L., Bombelli, A.: Differences in leaf traits among Mediterranean broad-leaves evergreen shrubs.-Ann. bot. fenn. 38: 15–24, 2001.Google Scholar
  8. Gratani, L., Covone, F., Larcher, W.: Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis.-Trees 20: 549–558, 2006.CrossRefGoogle Scholar
  9. Gratani, L., Crescente, M.F.: Map-making of plant biomass and leaf area index for management of protected areas.-Aliso 19: 1–12, 2000.Google Scholar
  10. Gratani, L., Fiorentino, E.: Changes of chlorophyll content in growing and adult leaves: daily rhythm in Quercus ilex L.-Bull. Soc. roy. Bot. Belg. 121: 87–93, 1988.Google Scholar
  11. Gratani, L., Pesoli, P., Crescente, M.F., Aichner, K., Larcher, W.: Photosynthesis as a temperature indicator in Quercus ilex L.-Glob. Plant Chang. 24: 153–163, 2000.CrossRefGoogle Scholar
  12. Gratani, L., Varone, L.: Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin.-Photosynthetica 42: 551–558, 2004.CrossRefGoogle Scholar
  13. Gratani, L., Varone, L.: Long-time variations in leaf mass and area of Mediterranean evergreen broad-leaf and narrow-leaf maquis species.-Photosynthetica 44: 161–168, 2006.CrossRefGoogle Scholar
  14. Groom, Q.J., Baker, N.R., Long, S.P.: Photoinhibition of holly (Ilex aquifolium) in the field during the winter.-Physiol. Plant. 83: 585–590, 1991.CrossRefGoogle Scholar
  15. Hansen, J., Vogg, G., Beck, E.: Assimilation, allocation and utilization of carbon by 3-year-old Scots pine (Pinus sylvestris L.) trees during winter and early spring.-Trees 11: 83–90, 1996.Google Scholar
  16. Holm, G.: Chlorophyll mutations in barley.-Acta agr. scand. 4: 457–471, 1954.CrossRefGoogle Scholar
  17. Karavatas, S., Manetas, Y.: Seasonal patterns of photosystem 2 photochemical efficiency in evergreen sclerophylls and drought semi-deciduous shrubs under Mediterranean field conditions.-Photosynthetica 36: 41–49, 1999.CrossRefGoogle Scholar
  18. Kyparissis, A., Drilias, P., Manetas, Y.: Seasonal fluctuations in photoprotective (xanthophyll cycle) and photoselective (chlorophylls) capacity in eight Mediterranean plant species belonging to two different growth forms.-Aust. J. Plant Physiol. 27: 265–272, 2000.Google Scholar
  19. Larcher, W.: Photosynthesis as a tool for indicating temperature stress events.-In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 261–277. Springer-Verlag, Berlin-Heidelberg 1994.Google Scholar
  20. Larcher, W: Temperature stress and survival ability of Mediterranean sclerophyllous plants.-Plant Biosyst. 134: 279–295, 2000.CrossRefGoogle Scholar
  21. MacLachlan, S., Zalik, S.: Plastid structure, chlorophyll concentration, and free aminoacid composition of a chlorophyll mutant of barley.-Can. J. Bot. 41: 1053–1062, 1963.CrossRefGoogle Scholar
  22. Munné-Bosch, S., Nogués, S., Alegre, L.: Diurnal variations of photosynthesis and dew absorption by leaves in two evergreen shrubs growing in Mediterranean field conditions.-New Phytol. 144: 109–119, 1999.CrossRefGoogle Scholar
  23. Nunes, M.A., Ramalho, J.D.C., Rijo, P. da S.: Seasonal changes in some photosynthetic properties of Ceratonia siliqua (carob tree) leaves under natural conditions.-Physiol. Plant. 86: 381–387, 1992.CrossRefGoogle Scholar
  24. Ögren, E., Sjöström, M.: Estimation of the effect of photo-inhibition on the carbon gain in leaves of a willow canopy.-Planta 181: 560–567, 1990.CrossRefGoogle Scholar
  25. Oliveira, G., Peñuelas, J.: Comparative photochemical and phenomorphological responses to winter stress of an evergreen (Quercus ilex L.) and semi-deciduous (Cistus albidus L.) Mediterranean woody species.-Acta oecol. 21: 97–107, 2000.CrossRefGoogle Scholar
  26. Oliveira, G., Peñuelas, J.: Comparative protective strategies of Cistus albidus and Quercus ilex L. facing photoinhibitory winter conditions.-Environ. exp. Bot. 47: 281–289, 2002.CrossRefGoogle Scholar
  27. Oliveira, G., Peñuelas, J.: Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L.-Plant Ecol. 175: 179–191, 2004.CrossRefGoogle Scholar
  28. Reich, P.B., Kloeppel, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species.-Oecologia 104: 24–30, 1995.CrossRefGoogle Scholar
  29. Terradas, J., Savé, R.: The influence of summer and winter stress and water relationships on the distribution of Quercus ilex L.-Vegetatio 100: 137–145, 1992.CrossRefGoogle Scholar
  30. Tretiach, M., Bolognini, G., Rondi, A.: Photosynthetic activity of Quercus ilex at the extremes of a transect between Mediterranean and submediterranean vegetation (Trieste-NE Italy).-Flora 192: 369–378, 1997.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • L. Varone
    • 1
  • L. Gratani
    • 1
  1. 1.Department of Plant BiologySapienza University of RomeRomeItaly

Personalised recommendations