, Volume 45, Issue 2, pp 303–305 | Cite as

Characterization of the photosynthetic pathway of some tropical food yams (Dioscorea spp.) using leaf natural 13C abundance

Brief Communication


A total of 23 genotypes belonging to seven tropical food yams and two wild relative species of different origin and coming from two sampling ecological zones (the Republic of Benin in Africa and Guadeloupe in the Caribbean) was analysed for their 13C content. The δ13C values for all yam samples (from −25.39 and −30.07 ‰) indicated that all species had a C3 photosynthetic type.

Additional key words

cultivar differences Zea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayensu, E.S.: Dioscoreales.-In: Metcalfe, C.R. (ed.): Anatomy of the Monocotyledons. Clarendon Press, Oxford 1972.Google Scholar
  2. Balesdent, J.: The significance of organic separates to carbon dynamics and its modelling in some cultivated soils.-Eur. J. Soil Sci. 47: 485–493, 1996.CrossRefGoogle Scholar
  3. Basinger, M.A.: Vascular flora of Thompson woods, Jackson County, Illinois.-Trans. Illinois State Acad. Sci. 95: 21–36, 2002.Google Scholar
  4. Bender, M.M.: Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation.-Phytochemistry 10: 1239–1244, 1971.CrossRefGoogle Scholar
  5. Bhagsari, A.S.: Photosynthesis and stomatal conductance of selected root crops as related to leaf age.-Crop Sci. 26: 902–906, 1988.CrossRefGoogle Scholar
  6. Black, C.C., Jr.: Photosynthetic carbon fixation in relation to net CO2 uptake.-Annu. Rev. Plant Physiol. 24: 253–286, 1973.CrossRefGoogle Scholar
  7. Brown, R.H.: A difference in N use efficiency in C3 and C4 plants and its implications in adaptation and evolution.-Crop Sci. 18: 93–98, 1978.CrossRefGoogle Scholar
  8. Downes, R.W.: Differences in transpiration rates between tropical and temperate grasses.-Planta 88: 261–273, 1969.CrossRefGoogle Scholar
  9. Downton, W.J.S.: The occurrence of C4 photosynthesis among plants.-Photosynthetica 9: 96–105, 1975.Google Scholar
  10. FAO: Database.-, 2004.
  11. Gastal, F., Lemaire, G.: N uptake and distribution in crops: an agronomical and ecological perspective.-J. exp. Bot. 53: 789–799, 2002.PubMedCrossRefGoogle Scholar
  12. Hatch, M.D., Slack, C.R.: Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation.-Biochem. J. 101: 103–111, 1966.PubMedGoogle Scholar
  13. Hultine, K.R., Marshall, J.D.: Altitude trends in conifer leaf morphology and stable carbon isotope composition.-Oecologia 123: 32–40, 2000.CrossRefGoogle Scholar
  14. Johnston, M., Onwueme, I.C.: Effect of shade on photosynthetic pigments in the tropical root crops: yam, taro, tannia, cassava and sweet potato.-Exp. Agr. 34: 301–312, 1998.CrossRefGoogle Scholar
  15. Knuth, R.: Dioscoreaceae.-Pflanzenreich 87: 1–278, 1924.Google Scholar
  16. Kortschak, H.P., Hartt, C.E., Burr, G.O.: Carbon dioxide fixation in sugar-cane leaves.-Plant Physiol. 40: 209–213, 1965.PubMedGoogle Scholar
  17. Kpeglo, K.D., Obigbesan, G.O., Wilson, J.E.: Physiological studies on the white yam, Dioscorea rotundata Poir. 1. Influence of plant age and leaf position on photosynthesis and dark respiration.-Beitr. trop. Landwirtsch. Veterinärmed. 20: 15–21, 1982.Google Scholar
  18. Li, M.C., Liu, H.Y., Yi, X.F., Li, L.X.: Characterization of photosynthetic pathway of plant species growing in the eastern Tibetan plateau using stable carbon isotope composition.-Photosynthetica 44: 102–108, 2006.CrossRefGoogle Scholar
  19. Marchese, J.A., Ming, L.C., Ducatti, C., Broetto, F., Da Silva, E.T., Leonardo, M.: Carbon isotope composition as a tool to control the quality of herbs and medicinal plants.-Photosynthetica 44: 155–159, 2006.CrossRefGoogle Scholar
  20. O’Leary, M.H.: Carbon isotopes in photosynthesis. Fractionation techniques may reveal new aspects of carbon dynamics in plants.-BioScience 38: 328–336, 1988.CrossRefGoogle Scholar
  21. Onwueme, I.C., Johnston, M.: Influence of shade on stomata density, leaf size and other leaf characteristics in the major tropical root crops, tania, sweet potato, yam, cassava and taro.-Exp. Agr. 36: 509–516, 2000.CrossRefGoogle Scholar
  22. Orkwor, G.C., Asiedu, R., Ekanayake, I.J.: Food Yams Advances in Research.-IITA, Ibadan 1998.Google Scholar
  23. Raghavendra, A.S., Das, V.S.R.: The occurrence of C4-photosynthesis: A supplementary list of C4 plants reported during late 1974-mid 1977.-Photosynthetica 12: 200–208, 1978.Google Scholar
  24. Rowan, S.F., Russell, M.K.: C4 Plant Biology.-Academic Press, San Diego 1998.Google Scholar
  25. Sinclair, T.R., Horie, T.: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review.-Crop Sci. 29: 90–98, 1989.CrossRefGoogle Scholar
  26. Smith, B.N., Epstein, S.: Two categories of 13C/12C ratios for higher plants.-Plant Physiol. 47: 380–384, 1971.PubMedCrossRefGoogle Scholar
  27. Voortman, R.L., Sonneveld, B.G.J.S., Langeveld, J.W.A., Fischer, G., Van Velthuizen, H.T.: Climate Change and Global Agricultural Potential: A Case Study of Nigeria.-WP-99-06, Centre for World Food Studies, Free University Amsterdam; International Institute for Applied Systems Analysis, Laxenburg 1999.Google Scholar
  28. Winslow, J.C., Hunt, E.R., Piper, S.C.: The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research.-Ecol. Modell. 163: 153–173, 2003.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  1. 1.Centre de Coopération International en Recherche Agronomique pour le DéveloppementUnité de Recherche en Amélioration des Plantes à Multiplication Végétative, IITACotonouBenin Republic
  2. 2.Institut National en Recherche Agronomique, INRAPetit-BourgFrance

Personalised recommendations