, Volume 43, Issue 4, pp 529–534 | Cite as

Effects of heat treatment on the protein secondary structure and pigment microenvironment in photosystem 1 complex

  • Z.-H. Hu
  • Y.-N. Xu
  • Y.-D. Gong
  • T.-Y. Kuang


The protein secondary structure and pigments' microenvironment in photosystem 1 (PS1) complexes were studied in the temperature range of 25–80 °C using Fourier transform infrared (FT-IR) and circular dichroism (CD) spectroscopy, respectively. Quantitative analysis of the component bands of the amide I band (1 700–1 600 cm−1) showed no significant change below 50 °C. However, apparent conformational changes occurred at 60 °C and further continued at 70 and 80 °C accompanied with transitions of secondary structure mainly from α-helix to the β-sheet structures. CD analysis demonstrated that the regular arrangement, viz. protein microenvironment of pigments of PS1 complexes, was destroyed by heat treatment which might come from the changes of protein secondary structure of PS1. The CD signals at 645 nm contributed by chlorophyll (Chl) b of light-harvesting complex 1 (LHC1) were easily destroyed at the beginning of heat treatment (25–60 °C). When temperature reached 70 and 80 °C, the CD signals at 478 nm contributed mainly by Chl b of LHC1 and 498 nm contributed by carotenoids decreased most rapidly, indicating that LHC1 was more sensitive to high temperature than core complexes. In addition, the oxygen uptake rate decreased by 90.81 % at 70 °C and was lost completely at 80 °C showing that heat treatment damaged the regular function of PS1 complexes. This may be attributed to heat-induced changes of pigment microenvironment and protein secondary structure, especially transmembrane α-helix located in PsaA/B of PS1.

Additional key words

carotenoids chlorophyll circular dichroism Fourier transform infrared spectra oxygen uptake photosystem 2 proteins spinach Spinacia 





circular dichroism




Fourier transform infrared


light-harvesting complex 1


primary electron donor


photosystem 1


reaction centre


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armond, P.A., Bjorkman, O., Staehelin, L.A.: Dissociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. — Biochim. biophys. Acta 601: 433–442, 1980.PubMedGoogle Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.Google Scholar
  3. Barber, J., Morris, E., Buchel, C.: Revealing the structure of the photosystem II chlorophyll binding proteins, CP43 and CP47. — Biochim. biophys. Acta 1459: 239–247, 2000.Google Scholar
  4. Bassi, R., Silvestri, M., Dainese, P., Moya, I., Giacometti, G.M.: Effects of a non-ionic detergent on the spectral properties and aggregation state of the light-harvesting chlorophyll a/b protein complex (LHCII). — J. Photochem. Photobiol. B 9: 335–354, 1991.CrossRefGoogle Scholar
  5. Bassi, R., Simpson, D.: Chlorophyll-protein complexes of barley photosystem I. — Eur. J. Biochem. 163: 221–230, 1987.CrossRefPubMedGoogle Scholar
  6. Ben-Shem, A., Frolow, F., Nelson, N.: Crystal structure of plant photosystem I. — Nature 426: 630–635, 2003.CrossRefPubMedGoogle Scholar
  7. Berry, J., Bjorkman, O.: Photosynthetic response and adaption to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.CrossRefGoogle Scholar
  8. Carpentier, R., Larue, B., Leblanc, R.M.: Photoacoustic spectroscopy of Anacystis nidulans. III. Detection of photosynthetic activities. — Arch. Biochem. Biophys. 338: 534–543, 1984.CrossRefGoogle Scholar
  9. Chitinis, P.R.: Photosystem I. — Plant Physiol. 111: 661–669, 1996.CrossRefPubMedGoogle Scholar
  10. Chitinis, P.R.: Photosystem I: function and physiology. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 593–626, 2001.CrossRefPubMedGoogle Scholar
  11. Chitnis, P.R., Xu, Q., Chitnis, V.P., Nechushtai, R.: Function and organization of Photosystem I polypeptides. — Photosynth. Res. 44: 23–40, 1995.CrossRefGoogle Scholar
  12. De Las Rivas, J., Barber, J.: Structure and thermal stability of photosystem II reaction centres studied by infrared spectroscopy. — Biochemistry 36: 8897–8903, 1997.CrossRefPubMedGoogle Scholar
  13. Fromme, P., Jordan, P., Krauß, N.: Structure of photosystem I. — Biochim. biophys. Acta 1507: 5–31, 2001.PubMedGoogle Scholar
  14. Fromme, P., Schubert, W.D., Krauß, N.: Structure of Photosystem I: Suggestions on the docking sites for plastocyanin, ferredoxin and the coordination of P700. — Biochim. biophys. Acta 1187: 99–105, 1994.PubMedGoogle Scholar
  15. Golbeck, J.H.: Structure and function of photosystem I. — Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 293–324, 1992.CrossRefGoogle Scholar
  16. Haworth, P., Watson, J.L., Arntzen, C.J.: The detection, isolation and characterization of a light-harvesting complex which is specifically associated with photosystem I. — Biochim. biophys. Acta 724: 151, 1983.Google Scholar
  17. He, W.-Z., Newell, W.R., Haris, P.I., Chapman, D., Barber, J.: Protein secondary structure of the isolated photosystem II reaction centre and conformational changes studied by Fourier transformation infrared spectroscopy. — Biochemistry 30: 4552–4559, 1991.CrossRefPubMedGoogle Scholar
  18. Hu, Z.H., Xu, Y.N., Jiang, G.Z, Kuang, T.Y.: Degradation and inactivation of photosystem I complexes during linear heating. — Plant Sci. 166: 1177–1183, 2004.CrossRefGoogle Scholar
  19. Ilik, P., Kouril, R., Fiala, J., Naus, J., Vacha, F.: Spectral characterization of chlorophyll fluorescence in barley leaves during linear heating analysis of high-temperature fluorescence rise around 60 °C. — J. Photochem. Photobiol. B 59: 103–114, 2000.CrossRefPubMedGoogle Scholar
  20. Jordan, P., Fromme, P., Klukas, O., Witt, H.T., Saenger, W., Krauß, N.: Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. — Nature 411: 909–917, 2001.CrossRefPubMedGoogle Scholar
  21. Klukas, O., Schubert, W.D., Jordan, P., Krauß, N., Fromme, P., Witt, H.T., Saenger, W.: Localization of two phylloquinones, QK and QK′, in an improved electron density map of photosystem I at 4-Å resolution. — J. biol. Chem. 274: 7361–7367, 1999a.CrossRefPubMedGoogle Scholar
  22. Klukas, O., Schubert, W.D., Jordan, P., Krauß, N., Fromme, P., Witt, H.T., Saenger, W.: Photosystem I, an improved model of the stromal subunits PsaC, PsaD, and PsaE. — J. biol. Chem. 274: 7351–7360, 1999b.CrossRefPubMedGoogle Scholar
  23. Krimm, S., Bandekar, J.: Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. — Adv. Protein Chem. 38: 181–364, 1986.PubMedGoogle Scholar
  24. Lam, E., Ortiz, W., Malkin, R.: Chlorophyll a/b proteins of photosystem I. — FEBS Lett. 168: 10–14, 1984.CrossRefGoogle Scholar
  25. Morgan, R., Ivanov, A.G., Williams, J., Khan, M., Huner, N.P.A.: Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and a mesophilic alga. — Biochim. biophys. Acta 1561: 251–265, 2002.PubMedGoogle Scholar
  26. Mullet, J.E., Burke, J.J., Arntzen, C.J.: Chlorophyll proteins of photosystem I. — Plant Physiol. 65: 814–822, 1980.Google Scholar
  27. Nechushtai, R., Eden, A., Cohen, Y., Klein, J.: Introduction to photosystem I: reaction centre function, composition and structure. — In: Ort, D.R., Yocum, C.F. (ed.): Oxygenic Photosynthesis: The Light Reactions. Pp. 289–311. Kluwer Academic Publ., Dordrecht — Boston — London 1996.Google Scholar
  28. Ruan, X., Wei, J., Xu, Q., Wang, J.S., Gong, Y.D., Zhang, X.F., Kuang, T.Y., Zhao, N.M.: Comparison of the effects of Triton X-100 treatment on the protein secondary structure of photosystem I and photosystem II studied by FT-IR spectroscopy. — J. mol. Struct. 525: 97–106, 20000.CrossRefGoogle Scholar
  29. Ruban, A.V., Calkoen, F., Kwa, S.L.S., Grondelle, R.V., Horton, P., Dekker, J.P.: Characterization of LHCII in the aggregated state by linear and circular dichroism spectroscopy. — Biochim. biophys. Acta 1321: 61–70, 1997.Google Scholar
  30. Scheller, H.V., Jensen, P.E., Haldrup, A., Lunde, C., Knoetzel, J.: Role of subunits in eukaryotic photosystem I. — Biochim. biophys. Acta 1507: 41–60, 2001.PubMedGoogle Scholar
  31. Schubert, W.D., Klukas, O., Saenger, W., Witt, H.T., Fromme, P., Krauß, N.: A common ancestor for oxygenic and anoxygenic photosynthetic systems: a comparison based on the structural model of photosystem I. — J. mol. Biol. 280: 297–314, 1988.CrossRefGoogle Scholar
  32. Shi, H., Xiong, L., Yang, K.Y., Tang, C.Q., Kuang, T.Y., Zhao, N.M.: Protein secondary structure and conformational changes of photosystem II during heat denaturation studied by Fourier transform infrared spectroscopy. — J. mol. Struct. 446: 137–147, 1998.CrossRefGoogle Scholar
  33. Somsen, O.J., Grondelle, R.V., Amerongen, H.V.: Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. — Biophys. J. 71: 1934–1951, 1996.PubMedGoogle Scholar
  34. Surewicz, W.K., Mantsch, H.H.: New insight into protein secondary structure from resolution-enhanced infrared spectra. — Biochim. biophys. Acta 952: 115–130, 1988.PubMedGoogle Scholar
  35. Takeuchi, T.S., Thornber, J.P.: Heat-induced alterations in thylakoid membrane protein composition in barley. — Aust. J. Plant Physiol. 21: 759–770, 1994.Google Scholar
  36. Wang, M., Zhong, Z.P., Wang, K.B., Li, L.B., Kuang, T.Y.: Isolation of chlorophyll protein complexes from the thylakoid membrane in Nostoc flagelliforme and their spectroscopic characterization. — Acta bot. sin. 42: 684–688, 2000.Google Scholar
  37. Wei, J., Yu, H., Li, L.B., Kuang, T.Y., Wang, J.S., Gong, Y.D., Zhao, N.M.: The photodamage process of pigments and proteins of PS I complexes from Spinacia oleracea L. — Chin. Sci. Bull. 46: 1812–1816, 2001.Google Scholar
  38. Zhang, H., Yamamoto, Y., Ishikawa, Y., Carpentier, R.: Characterization of the secondary structure and thermostability of the extrinsic 16 kilodalton protein of spinach photosystem II by Fourier transform infrared spectroscopy. — J. mol. Struct. 513: 127–132, 1999.CrossRefGoogle Scholar
  39. Zhong, Z.P., Wu, Y.H., Xu, J., Feng, L.J., Shi, D.J.: Differentiation of hormogonia and photosynthetic characterization of Nostoc flagelliforme. — Acta bot. sin. 42: 570–575, 2000.Google Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2005

Authors and Affiliations

  • Z.-H. Hu
    • 1
  • Y.-N. Xu
    • 1
  • Y.-D. Gong
    • 2
  • T.-Y. Kuang
    • 1
  1. 1.Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botanythe Chinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Science and BiotechnologyTsinghua UniversityBeijingChina

Personalised recommendations