Philosophical Studies

, Volume 171, Issue 2, pp 279–288 | Cite as

Learning experiences and the value of knowledge

  • Simon M. Huttegger


Generalized probabilistic learning takes place in a black-box where present probabilities lead to future probabilities by way of a hidden learning process. The idea that generalized learning can be partially characterized by saying that it doesn’t foreseeably lead to harmful decisions is explored. It is shown that a martingale principle follows for finite probability spaces.


Value of knowledge Decision theory Reflection principle Probabilistic learning 


  1. de Finetti, B. (1974). Theory of probability (Vol. 1). London: Wiley.Google Scholar
  2. Goldstein, M. (1983). The prevision of a prevision. Journal of the American Statistical Association, 78, 817–819.CrossRefGoogle Scholar
  3. Good, I. J. (1967). On the principle of total evidence. British Journal for the Philosophy of Science, 17, 319–321.CrossRefGoogle Scholar
  4. Graves, P. (1989). The total evidence principle for probability kinematics. Philosophy of Science, 56, 317–324.CrossRefGoogle Scholar
  5. Huttegger, S. M. (2013). In defense of reflection. Philosophy of Science, 80, 413–433.CrossRefGoogle Scholar
  6. Jeffrey, R. C. (1965). The logic of decision. New York: McGraw-Hill. 3rd Revised edition, 1983. Chicago: University of Chicago Press.Google Scholar
  7. Jeffrey, R. C. (1988). Conditioning, kinematics, and exchangeability. In B. Skyrms & W. L. Harper (Eds.) Causation, chance, and credence (Vol. 1, pp. 221–255). Dordrecht: Kluwer.CrossRefGoogle Scholar
  8. Jeffrey, R. C. (1992). Probability and the art of judgement. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  9. Kadane, J. B., Schervish M. J., & Seidenfeld, T. (1996). Reasoning to a foregone conclusion. Journal of the American Statistical Association, 91, 1228–1236.CrossRefGoogle Scholar
  10. Kadane, J. B., Schervish, M., & Seidenfeld, T. (2008). Is ignorance bliss? The Journal of Philosophy, 105, 5–36.Google Scholar
  11. Myrvold, W. C. (2012). Epistemic values and the value of learning. Synthese, 187, 547–568.CrossRefGoogle Scholar
  12. Ramsey, F. P. (1990). Weight or the value of knowledge. British Journal for the Philosophy of Science, 41, 1–4.CrossRefGoogle Scholar
  13. Savage, L. J. (1954). The foundations of statistics. New York: Dover Publications.Google Scholar
  14. Seidenfeld, T. (2001). Remarks on the theory of conditional probability: Some issues of finite versus countable additivity. In V. F. Hendricks (Ed.), Probability theory (pp. 167–178). Amsterdam: Kluwer.CrossRefGoogle Scholar
  15. Skyrms, B. (1990). The dynamics of rational deliberation. Cambridge, MA: Harvard University Press.Google Scholar
  16. Skyrms, B. (1997). The structure of radical probabilism. Erkenntnis, 45, 285–297.Google Scholar
  17. van Fraassen, B. C. (1984). Belief and the will. Journal of Philosophy, 81, 235–256.CrossRefGoogle Scholar
  18. van Fraassen, B. C. (1995). Belief and the problem of Ulysses and the Sirens. Philosophical Studies, 77, 7–37.CrossRefGoogle Scholar
  19. Zabell, S. L. (2002). It all adds up: The dynamic coherence of radical probabilism. Philosophy of Science, 69, 98–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Logic & Philosophy of ScienceUniversity of California, IrvineIrvineUSA
  2. 2.Munich Center for Mathematical Philosophy (MCMP)MünchenGermany

Personalised recommendations