Philosophical Studies

, 147:89 | Cite as

The nature of probability

  • Patrick Suppes


The thesis of this article is that the nature of probability is centered on its formal properties, not on any of its standard interpretations. Section 2 is a survey of Bayesian applications. Section 3 focuses on two examples from physics that seem as completely objective as other physical concepts. Section 4 compares the conflict between subjective Bayesians and objectivists about probability to the earlier strident conflict in physics about the nature of force. Section 5 outlines a pragmatic approach to the various interpretations of probability. Finally, Sect. 6 argues that the essential formal nature of probability is expressed in the standard axioms, but more explicit attention should be given to the concept of randomness.


Bayesian Physical propensity Pragmatism Probability Randomness Standard axioms 


  1. Alekseev, V. M. (1968–1969a). Quasirandom dynamical systems I, II, III. Mathematicheskii USSR Sbornik 5–7, 505–560 (and 1–43).Google Scholar
  2. Alekseev, V. M. (1969b). Quasirandom dynamical systems (Russian). Mathematicheskii Zametki 6(4):489–498. (English translation in Mathematical Notes 6 (1969), 749–753.)Google Scholar
  3. Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society 53:370–418. (Reprinted in Facsimiles of two papers by Bayes with a commentary by W. Edwards Deming, Ed., 1940, New York: Hafner Pub. Co.)Google Scholar
  4. Birkhoff, G. D. (1927/1966). Dynamical systems, Vol. 9. New York: AMS College Publications.Google Scholar
  5. Birkhoff, G. D. (1935). Nouvelles Recherches sur les systèmes dynamiques. Memoriae Pontificiae Academiae Scientiarum Novi Lyncaei, 1, 85–216.Google Scholar
  6. Boullier, F. (1868). Histoire de la Philosophie Cartesienne (3rd ed.). Paris: Delagrave.Google Scholar
  7. Carnap, R. (1950). The logical foundations of probability. Chicago, IL: University of Chicago Press.Google Scholar
  8. Dawid, A. P. (1986). Probability forecasting. In S. Kotz, N. L. Johnson, & C. B. Read (Eds.), Encyclopedia of statistical sciences (pp. 210–218). New York: Wiley.Google Scholar
  9. Descartes, R. (1644/1983). Principia philosophiae. Amsterdam: Ludovicum Elzevirium. (V. R. Miller & R. P. Miller (Ed.), Trans., Principles of philosophy. Dordrecht: Reidel, 1983.)Google Scholar
  10. Descartes, R. (1897). Meditationes De Prima Philosophia. In C. Adam & P. Tannery (Eds.), Oeuvres des Descartes. Paris: L. Cerf.Google Scholar
  11. Downey, R., Hirschfeldt, D. R., Nies, A., & Terwijn, S. A. (2006). Calibrating randomness. The Bulletin of Symbolic Logic, 12, 411–491.CrossRefGoogle Scholar
  12. Epicurus. (1940). Epicurus to Herodotus. In W. J. Oates (Ed.), The Stoic and Epicurean philosophers: The complete extant writings of Epicurus, Epictetus, Lucretius. New York: Random House. (by arrangement with Oxford University Press).Google Scholar
  13. Jaynes, E. T. (1978). Where do we stand on maximum entropy? In R. D. Rosenkrantz (Ed.), Papers on probability, statistics and statistical physics (pp. 211–314). Dordrecht: Reidel.Google Scholar
  14. Jeffreys, H. (1948). Theory of probability (2nd ed.). Oxford: Clarendon Press. (First published in 1939).Google Scholar
  15. Kant, I. (1786/1970). Metaphysical foundations of natural science. New York: Bobbs-Merrill Company, Inc. (First published in 1786. J. Ellington, Trans., with introduction and essay.)Google Scholar
  16. Laplace, P. S. (1799/1966). Mécanique céleste. Bronx, NY: Chelsea Publishing Co. (Vols. 1–4 is a Reprint of the English translation by Nathaniel Bowditch of the edition published in Boston, 1829–1839.)Google Scholar
  17. Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hilbon, M., Lewandowski, R., et al. (1984). The forecasting accuracy of major time series methods. Chichester, UK: Wiley.Google Scholar
  18. Miller, J. S., & Nies, A. (2006). Randomness and computability: open questions. The Bulletin of Symbolic Logic, 12, 390–410.CrossRefGoogle Scholar
  19. Moser, J. (1973). Stable and random motions in dynamical systems with special emphasis on celestial mechanics. Herman Weyl Lectures, the Institute for Advanced Study. Princeton, NJ: Princeton University Press.Google Scholar
  20. Mosteller, F., & Wallace, D. L (1964/1984). Applied Bayesian and classical inference: The case of the federalist papers. Springer Series in Statistics. New York: Springer.Google Scholar
  21. Mouy, P. (1934). Le Developpement de la Physique Cartesienne 1646–1712. Paris: J. Vrin.Google Scholar
  22. Newton, I. (1686/1946). Philosophiae Naturalis Principia Mathematica. Berkeley, CA: University of California Press. (First published in 1687. F. Cajori, Trans.)Google Scholar
  23. Ornstein, D. S., & Weiss, B. (1991). Statistical properties of chaotic systems. Bulletin of the American Mathematical Society (New Series), 24, 11–116.CrossRefGoogle Scholar
  24. Sitnikov, K. (1960). Existence of oscillating motions for the three-body problem. Doklady Akademii Nauk, USSR, 133(2), 303–306.Google Scholar
  25. Skyrms, B. (1990). The dynamics of rational deliberation. Cambridge, MA: Harvard University Press.Google Scholar
  26. Suppes, P. (1954). Descartes and the problem of action at a distance. Journal of the History of Ideas, 15, 146–152.CrossRefGoogle Scholar
  27. Suppes, P. (1967). Some extensions of Randall’s Interpretation of Kant’s philosophy of science. In J. P. Anton (Ed.), Naturalism and historical understanding: Essays on the philosophy of John Herman Randall, Jr (pp. 108–120). New York: State University of New York Press.Google Scholar
  28. Suppes, P. (1983). Arguments for randomizing. In P. D. Asquith & T. Nickles (Eds.), PSA 1982. Lansing, MI: Philosophy of Science Association.Google Scholar
  29. Suppes, P. (2002). Representation and invariance of scientific structures. Stanford University: CSLI Publications.Google Scholar
  30. Suppes, P. (2007). Where do Bayesian priors come from? Synthese, 156, 441–471.CrossRefGoogle Scholar
  31. Whewell, W. (1857). History of the inductive sciences (3rd ed.). London: John W. Parker and Son.Google Scholar
  32. Whittaker, E. T. (1910). A history of the theories of aether and electricity. London: Longmans, Green & Co. (Dublin University Press).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations