Phenomenology and the Cognitive Sciences

, Volume 7, Issue 2, pp 279–300 | Cite as

Anticipating sensitizes the body

  • Anton Lethin


With emotional motivation the organism prepares the body to obtain a goal. There is an anticipatory sensitization of the sensory systems in the body and the brain. Presynaptic facilitation of the sensory afference in the spinal cord is probably involved. In a second stage the higher centers develop an action image/plan to realize the goal, modifying the initial preparations in the body. The subject experiences the changes in the body as a feeling. Three empirical studies supporting this description are summarized. This description of how feelings develop from emotion circuits is discussed from a phenomenological viewpoint.


Anticipatory Sensitization Presynaptic Proprioceptive Subjectivity 


  1. Anscombe, G. E. M. (1957). Intention. Oxford: Blackwell.Google Scholar
  2. Bandler, R., & Flynn, J. (1972). Control of somatosensory fields for striking during hypothalamically elicited attack. Brain Research, 38, 197–201.CrossRefGoogle Scholar
  3. Bonnet, M., Decety, J., Jeannerod, M., & Requin, J. (1997). Mental simulation of an action modulates the excitability of spinal reflex pathways in man. Cognitive Brain Research, 5, 221–228.CrossRefGoogle Scholar
  4. Cohen, M., Schwartz-Giblin, S., & Pfaff, D. (1985). The pudendal nerve-evoked response in axial muscle. Experimental Brain Research, 61, 175–181.CrossRefGoogle Scholar
  5. Damasio, A. (1999). The feeling of what happens. New York: Harcourt.Google Scholar
  6. Damasio, A. (2003). Looking for Spinoza. New York: Harcourt.Google Scholar
  7. Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Cognitive Brain Research, 3, 87–93.CrossRefGoogle Scholar
  8. Dennett, D. (1991). Consciousness explained. New York: Little Brown.Google Scholar
  9. DePreester, H. (2002). Intentionality and the inside/outside distinction in sensitive systems. Consciousness and Emotion, 3, 65–79.CrossRefGoogle Scholar
  10. Ellis, R. (1995). Questioning consciousness. Amsterdam: John Benjamins.Google Scholar
  11. Ellis, R. (2000). Efferent brain processes and the enactive approach to consciousness. Journal of Consciousness Studies, 7(4), 40–50.Google Scholar
  12. Ellis, R. (2001). Implications of inattentional blindness for ‘enactive’ theories of consciousness. Brain and Mind, 2, 297–322.CrossRefGoogle Scholar
  13. Ellis, R. (2005). Curious emotions. Roots of consciousness and personality in motivated action. Amsterdam: John Benjamins.Google Scholar
  14. Ellis, R., & Newton, N. (1998). Three paradoxes of phenomenal consciousness: Bridging the explanatory gap. Journal of Consciousness Studies, 5(4), 419–442.Google Scholar
  15. Gallagher, S. (1995). Body schema and intentionality. In J. Bermudez, A. Marcel, & N. Eilan (Eds.), The body and the self (pp. 225–244). Cambridge, MA: MIT Press.Google Scholar
  16. Gallagher, S. (2000). Exploring the self. A cognitive model of immunity to error through misidentification. In D. Zahavi (Ed.), Philosophical and psychopathological perspectives in self-experience (pp. 203–242). Amsterdam: John Benjamins.Google Scholar
  17. Gallagher, S. (2005). How the body shapes the mind. Oxford: Oxford University Press.Google Scholar
  18. Gallagher, S., & Jeannerod, M. (2002). From action to interaction. Journal of Consciousness Studies, 9(1), 3–26.Google Scholar
  19. Gallese, V. (2000). The inner sense of action: Agency and motor representations. Journal of Consciousness Studies, 7(10), 23–40.Google Scholar
  20. Gallistel, C. R. (1980). From muscles to motivation. American Scientist, 68, 398–409.Google Scholar
  21. Gandevia, S., Wilson, L., Inglis, J., & Burke, D. (1997). Mental rehearsal of motor tasks recruits alpha-motoneurones, but fails to recruit human fusimotor neurones selectively. Journal of Physiology, 505(1), 259–266.CrossRefGoogle Scholar
  22. Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J., & Rizzolatti, G. (2005). Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology, 3(3), 1–18.CrossRefGoogle Scholar
  23. Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–244.CrossRefGoogle Scholar
  24. Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford: Blackwell.Google Scholar
  25. Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14, S103–S109.CrossRefGoogle Scholar
  26. Lethin, A. (2005a). Exposing the covert agent. In R. Ellis, & N. Newton (Eds.), Consciousness and emotion: Agency, conscious choice, and selective perception (pp. 157–180). Amsterdam: John Benjamins.Google Scholar
  27. Lethin, A. (2005b). Covert agency with proprioceptive feedback. Journal of Consciousness Studies, 2(4/5), 96–114.Google Scholar
  28. MacDonnell, M., & Flynn, J. (1966a). Control of sensory fields by stimulation of hypothalamus. Science, 152, 1406–1408.CrossRefGoogle Scholar
  29. MacDonnell, M., & Flynn, J. (1966b). Sensory control of hypothalamic attack. Animal Behavior, 14, 399–405.CrossRefGoogle Scholar
  30. Marcel, A. (2003). The sense of agency: Awareness and ownership of action. In J. Roessler, & N. Eilan (Eds.), Agency and self-awareness (pp. 48–93). Oxford: Clarendon Press.Google Scholar
  31. Merleau-Ponty, M. (1962). Phenomenology of perception. London: Routledge and Kegan Paul (translated by C. Smith).Google Scholar
  32. Milne, R., Aniss, A., Kay, N., & Gandevia, S. (1988). Reduction in perceived intensity of cutaneous stimuli during movement: A quantitative study. Experimental Brain Research, 70, 569–576.CrossRefGoogle Scholar
  33. Newman, J. (1997). Putting the puzzle together, Part II. Journal of Consciousness Studies, 4(2), 100–21.Google Scholar
  34. Newman, J., & Baars, B. (1993). A neural attentional model for access to consciousness: A global workspace perspective. Concepts in Neuroscience, 4(2), 255–290.Google Scholar
  35. Newton, N. (1996). Foundations of understanding. Amsterdam: John Benjamins.Google Scholar
  36. Newton, N. (2000). The interdependence of consciousness and emotion. Consciousness and Emotion, 1(1), 1–10.CrossRefGoogle Scholar
  37. Newton, N. (2001). Emergence and the uniqueness of consciousness. Journal of Consciousness Studies, 8(9–10), 47–59.Google Scholar
  38. Newton, N. (2004). The art of representation: Support for an enactive approach. Behavioral and Brain Sciences, 27(3), 411.CrossRefGoogle Scholar
  39. Panksepp, J. (1998a). Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press.Google Scholar
  40. Panksepp, J. (1998b). The periconscious substrates of consciousness: Affective states and the evolutionary origins of the self. Journal of Consciousness Studies, 5(5–6), 566–582.Google Scholar
  41. Panksepp, J. (2000). Commentary on the unconscious Homunculus. Neuropsychoanalysis, 2(1), 24–31.Google Scholar
  42. Panksepp, J., & Watt, D. (2004). The ego is first and foremost a body ego. Neuropsychoanalysis, 5(2), 201–218.Google Scholar
  43. Pfaff, D., Schwartz-Giblin, S., McCarthy, M., & Kow, L. (1994). Cellular and molecular mechanisms of female reproductive behaviors. In E. Knobil & J. Neill (Eds.), The physiology of reproduction vol. 2 (pp. 107–221). New York: Raven.Google Scholar
  44. Requin, J., Bonnet, M., & Semjen, A. (1977). Is There a specificity in the supraspinal control of motor structures during preparation? In S. Dormic (Ed.), Attention and performance VI (pp. 139–174). Hillsdale, NJ: Erlbaum.Google Scholar
  45. Rose, P., & Scott, S. (2001). Sensory-motor control: A long-awaited behavioral correlate of presynaptic inhibition. Nature Neuroscience, 6(12), 1243–1245.CrossRefGoogle Scholar
  46. Rothwell, J. C. (1995) Critique of papers by Lemon and Bennett, Eyre and Miller, Sessle et al, Taylor et al, and Sears et al. In A. Taylor, M. Gladden, & R. Durbaba (Eds.), Alpha and gamma motor systems, (pp. 379–382). New York: Plenum.Google Scholar
  47. Rudomin, P. (2002). Selectivity of the central control of sensory information in the mammalian spinal cord. In S. Gandevia, U. Proske, & D. Stuart (Eds.), Sensorimotor control of movement and posture (pp. 157–169). New York: Kluwer.Google Scholar
  48. Rudomin, P., & Schmidt, R. (1999). Presynaptic inhibition in the vertebrate spinal cord revisited. Experimental Brain Research, 129(1), 1–37.CrossRefGoogle Scholar
  49. Searle, J., & Freeman, W. (1998). Do we understand consciousness? Journal of Consciousness Studies, 5(5–6), 718–733.Google Scholar
  50. Seki, K., Perlmutter, S., & Fetz, E. (2003). Sensory input to primate spinal cord is presynaptically inhibited during voluntary movement. Nature Neuroscience, 6, 1309–1316.CrossRefGoogle Scholar
  51. VanderHorst, V., & Holstege, G. (1996). A concept for the final common pathway of vocalization and lordosis behavior in the cat. In G. Holstege, R. Bandler, & C. Saper (Eds.), The emotional motor system (pp. 327–342). Amsterdam: Elsevier.CrossRefGoogle Scholar
  52. Varela, F. (1999). Present-time consciousness. Journal of Consciousness Studies, 6(2–3), 111–140.Google Scholar
  53. Varela, F., & Depraz, N. (2005). At the source of time. Valence and the constitutional dynamics of affect. Journal of Consciousness Studies, 12(8–10), 61–81.Google Scholar
  54. White, S., Fung, S., Jackson, D., & Imel, K. (1996). Serotonin, norepinephrine, and associated neuropeptides: Effects on somatic motoneuron excitability. In G. Holstege, R. Bandler, & C. Saper (Eds.), The emotional motor system (pp. 183–200). Amsterdam: Elsevier.CrossRefGoogle Scholar
  55. Wider, K. (1997). The bodily nature of consciousness. Ithaca, NY: Cornell University Press.Google Scholar
  56. Zahavi, D. (2003). Husserl’s phenomenology. Stanford: Stanford University Press.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.San FranciscoUSA

Personalised recommendations