Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery

Abstract

Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-enclosed vesicles and act like ‘messages in a bottle’ in cell-cell communication by transporting their cargoes to recipient cells. Small EVs (sEVs, < 200 nm) are highly researched recently and have been harnessed as novel delivery systems for the treatment of various diseases, including neurodegenerative disorders, cardiovascular diseases, and most importantly cancer primarily because of their non-immunogenicity, tissue penetration and cell-tropism. This review will first provide a comprehensive overview of sEVs regarding the current understanding on their properties, biogenesis, new classification by the ISEV, composition, as well as their roles in cancer development (thereby called “oncosomes”). The primary focus will be given to the current state of sEVs as natural nanocarriers for cancer drug delivery, the technologies and challenges involved in sEV isolation and characterization, therapeutic cargo loading, and surface modification to enhance tumor-targeting. We will also provide examples of sEV products under clinical trials. Furthermore, the current challenges as well as the advance in “sEV mimetics” to address some of the sEVs limitations is briefly discussed. We seek to advance our understanding of sEVs to unlock their full potential as superior drug delivery vehicles in cancer therapy.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  2. 2.

    Venditto VJ, Szoka FC Jr. Cancer nanomedicines: so many papers and so few drugs! Adv Drug Deliv Rev. 2013;65(1):80–8.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol. 1967;13(3):269–88.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Kim OY, Lee J, Gho YS. Extracellular vesicle mimetics: novel alternatives to extracellular vesicle-based theranostics, drug delivery, and vaccines. Semin Cell Dev Biol. 2017;67:74–82.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Nie W, Ma X, Yang C, Chen Z, Rong P, Wu M, et al. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia. Xenotransplantation. 2018;25(5):e12405.

    PubMed  Article  Google Scholar 

  7. 7.

    Lan J, Sun L, Xu F, Liu L, Hu F, Song D, et al. M2 macrophage-derived Exosomes promote cell migration and invasion in Colon Cancer. Cancer Res. 2019;79(1):146–58.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015;219:396–405.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Kim JH, Lee J, Park J, Gho YS. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol. 2015;40:97–104.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release. 2015;199:145–55.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C. Exosomal-like vesicles are present in human blood plasma. Int Immunol. 2005;17(7):879–87.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Bang C, Thum T. Exosomes: new players in cell–cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Liao W, Du Y, Zhang C, Pan F, Yao Y, Zhang T, et al. Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater. 2019;86:1–14.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano-interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale. 2014;6(5):2782–92.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Yuan D, Zhao Y, Banks WA, Bullock KM, Haney M, Batrakova E, et al. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 2017;142:1–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Qu M, Lin Q, Huang L, Fu Y, Wang L, He S, et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson's disease. J Control Release. 2018;287:156–66.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Gao W, Li F, Liu L, Xu X, Zhang B, Wu Y, et al. Endothelial colony-forming cell-derived exosomes restore blood-brain barrier continuity in mice subjected to traumatic brain injury. Exp Neurol. 2018;307:99–108.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Bastos N, Ruivo CF, da Silva S, Melo SA. Exosomes in cancer: use them or target them? Semin Cell Dev Biol. 2018;78:13–21.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Min L, Shen J, Tu C, Hornicek F, Duan Z. The roles and implications of exosomes in sarcoma. Cancer Metastasis Rev. 2016;35(3):377–90.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SEL, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020;159:332–43.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Yong T, Wang D, Li X, Yan Y, Hu J, Gan L, et al. Extracellular vesicles for tumor targeting delivery based on five features principle. J Control Release. 2020;322:555–65.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Ohno S, Drummen GP, Kuroda M. Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. Int J Mol Sci. 2016;17(2):172.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Trams EG, Lauter CJ, Salem N Jr, Heine U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta. 1981;645(1):63–70.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Jiang X-C, Gao J-Q. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm. 2017;521(1):167–75.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Aslan C, Maralbashi S, Salari F, Kahroba H, Sigaroodi F, Kazemi T, et al. Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy. J Cell Physiol. 2019;234(10):16885–903.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery. Pharmaceutics. 2018;10(4).

  31. 31.

    Darband SG, Mirza-Aghazadeh-Attari M, Kaviani M, Mihanfar A, Sadighparvar S, Yousefi B, et al. Exosomes: natural nanoparticles as bio shuttles for RNAi delivery. J Control Release. 2018;289:158–70.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science (New York, NY). 2008;319(5867):1244–7.

    CAS  Article  Google Scholar 

  33. 33.

    M HR, Bayraktar E, G KH, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci. 2017;18(3):538.

  34. 34.

    Fares J, Kashyap R, Zimmermann P. Syntenin: key player in cancer exosome biogenesis and uptake? Cell Adhes Migr. 2017;11(2):124–6.

    CAS  Article  Google Scholar 

  35. 35.

    Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, et al. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv. 2018;36(1):328–34.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Liu S, Zhan Y, Luo J, Feng J, Lu J, Zheng H, et al. Roles of exosomes in the carcinogenesis and clinical therapy of non-small cell lung cancer. Biomed Pharmacother. 2019;111:338–46.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Murphy DE, de Jong OG, Brouwer M, Wood MJ, Lavieu G, Schiffelers RM, et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Mol Med. 2019;51(3):32–12.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  38. 38.

    Li X, Wang Y, Wang Q, Liu Y, Bao W, Wu S. Exosomes in cancer: small transporters with big functions. Cancer Lett. 2018;435:55–65.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Mollaei H, Safaralizadeh R, Pouladi N. A brief review of exosomes and their roles in cancer. Meta Gene. 2017;11:70–4.

    Article  Google Scholar 

  40. 40.

    Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm. 2017;521(1–2):167–75.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ. Pereira de Almeida L. extracellular vesicles: novel promising delivery systems for therapy of brain diseases. J Control Release. 2017;262:247–58.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, et al. Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res. 2017;40(4):353–60.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Lu M, Zhao X, Xing H, Xun Z, Zhu S, Lang L, et al. Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. Int J Pharm. 2018;550(1–2):100–13.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Li W, Li C, Zhou T, Liu X, Liu X, Li X, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017;16(1):145.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Reza-Zaldivar EE, Hernandez-Sapiens MA, Minjarez B, Gutierrez-Mercado YK, Marquez-Aguirre AL, Canales-Aguirre AA. Potential effects of MSC-derived Exosomes in neuroplasticity in Alzheimer's disease. Front Cell Neurosci. 2018;12:317.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Kahlert C, Melo SA, Protopopov A, Tang J, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. Int J Biol Chem. 2014;289(7):3869–75.

    CAS  Article  Google Scholar 

  48. 48.

    Mrowczynski OD, Zacharia BE, Connor JR. Exosomes and their implications in central nervous system tumor biology. Prog Neurobiol. 2019;172:71–83.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Jesus S, Soares E, Cruz MT, Borges O. Exosomes as adjuvants for the recombinant hepatitis B antigen: first report. Eur J Pharm Biopharm. 2018;133:1–11.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5(12):1620–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Blanc L, De Gassart A, Géminard C, Bette-Bobillo P, Vidal M. Exosome release by reticulocytes--an integral part of the red blood cell differentiation system. Blood Cells Mol Dis. 2005;35(1):21–6.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, et al. Hsp20-mediated activation of exosome biogenesis in Cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016;65(10):3111–28.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Lin KC, Yip HK, Shao PL, Wu SC, Chen KH, Chen YT, et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. Int J Cardiol. 2016;216:173–85.

    PubMed  Article  Google Scholar 

  55. 55.

    Coren LV, Shatzer T, Ott DE. CD45 immunoaffinity depletion of vesicles from Jurkat T cells demonstrates that exosomes contain CD45: no evidence for a distinct exosome/HIV-1 budding pathway. Retrovirology. 2008;5(1):64.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56.

    Sadallah S, Eken C, Martin PJ, Schifferli JA. Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol (Baltimore, Md : 1950. 2011;186(11):6543–52.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Kim HS, Choi DY, Yun SJ, Choi SM, Kang JW, Jung JW, et al. Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res. 2012;11(2):839–49.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Kaur S, Singh SP, Elkahloun AG, Wu W, Abu-Asab MS, Roberts DD. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014;37:49–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Komaki M, Numata Y, Morioka C, Honda I, Tooi M, Yokoyama N, et al. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8(1):219.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. 60.

    Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, et al. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and Vasculogenesis. PLoS One. 2013;8(7):e68451.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–710.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Goetzl EJ, Schwartz JB, Mustapic M, Lobach IV, Daneman R, Abner EL, et al. Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB J. 2017;31(8):3689–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;30(1):3.22.1–3.22.29.

  64. 64.

    Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 2016;113(8):E968–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Yao Z, Jia X, Megger DA, Chen J, Liu Y, Li J, et al. Label-free proteomic analysis of Exosomes secreted from THP-1-derived macrophages treated with IFN-alpha identifies antiviral proteins enriched in Exosomes. J Proteome Res. 2019;18(3):855–64.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Tooi M, Komaki M, Morioka C, Honda I, Iwasaki K, Yokoyama N, et al. Placenta Mesenchymal stem cell derived Exosomes confer plasticity on fibroblasts. J Cell Biochem. 2016;117(7):1658–70.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Shyong YJ, Chang KC, Lin FH. Calcium phosphate particles stimulate exosome secretion from phagocytes for the enhancement of drug delivery. Colloids Surf B Biointerfaces. 2018;171:391–7.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Whiteside TL. Tumor-derived Exosomes and their role in Cancer progression. Adv Clin Chem. 2016;74:103–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Siveen KS, Raza A, Ahmed EI, Khan AQ, Prabhu KS, Kuttikrishnan S, et al. The Role of Extracellular Vesicles as Modulators of the Tumor Microenvironment, Metastasis and Drug Resistance in Colorectal Cancer. Cancers. 2019;11(6):746.

  70. 70.

    De Luca L, Laurenzana I, Trino S, Lamorte D, Caivano A, Musto P. An update on extracellular vesicles in multiple myeloma: a focus on their role in cell-to-cell cross-talk and as potential liquid biopsy biomarkers. Expert Rev Mol Diagn. 2019;19(3):249–58.

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Horie K, Kawakami K, Fujita Y, Sugaya M, Kameyama K, Mizutani K, et al. Exosomes expressing carbonic anhydrase 9 promote angiogenesis. Biochem Biophys Res Commun. 2017;492(3):356–61.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y. MiRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther. 2012;13(5):330–40.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36(34):4929–42.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25(4):501–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8(12):5574–6.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–57.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Couto N, Caja S, Maia J, Strano Moraes MC, Costa-Silva B. Exosomes as emerging players in cancer biology. Biochimie. 2018;155:2–10.

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Plebanek MP, Angeloni NL, Vinokour E, Li J, Henkin A, Martinez-Marin D, et al. Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nat Commun. 2017;8(1):1319.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Corcoran C, Rani S, O'Brien K, O'Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS One. 2012;7(12):e50999-e.

    Article  CAS  Google Scholar 

  82. 82.

    Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 2014;159(3):499–513.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Jabalee J, Towle R, Garnis C. The role of extracellular vesicles in Cancer: cargo, function, and therapeutic implications. Cells. 2018;7(8):93.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  84. 84.

    Xiao Y, Li Y, Yuan Y, Liu B, Pan S, Liu Q, et al. The potential of exosomes derived from colorectal cancer as a biomarker. Clin Chim Acta. 2019;490:186–93.

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Taberna M, Torres M, Alejo M, Mena M, Tous S, Marquez S, et al. The use of HPV16-E5, EGFR, and pEGFR as prognostic biomarkers for Oropharyngeal Cancer patients. Front Oncol. 2018;8:589.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Jara-Acevedo R, Campos-Silva C, Valés-Gómez M, Yáñez-Mó M, Suárez H, Fuentes M. Exosome beads array for multiplexed phenotyping in cancer. J Proteome. 2019;198:87–97.

    CAS  Article  Google Scholar 

  87. 87.

    Zhang W, Ni M, Su Y, Wang H, Zhu S, Zhao A, et al. MicroRNAs in serum Exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur Urol Focus. 2018;4(3):412–9.

    PubMed  Article  Google Scholar 

  88. 88.

    Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol. 2015;36(3):2007–12.

    Article  CAS  Google Scholar 

  89. 89.

    Ma C, Nie XG, Wang YL, Wu DP, Liang QD. Meta-analysis of the prognostic value of long non-coding RNA PVT1 for cancer patients. Medicine. 2018;97(49):e13548.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Sheridan C. Exosome cancer diagnostic reaches market. Nat Biotechnol. 2016;34(4):359–60.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Koh E, Lee EJ, Nam G-H, Hong Y, Cho E, Yang Y, et al. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials. 2017;121:121–9.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Unanue ER. Perspectives on anti-CD47 antibody treatment for experimental cancer. Proc Natl Acad Sci U S A. 2013;110(27):10886–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Chauhan S, Danielson S, Clements V, Edwards N, Ostrand-Rosenberg S, Fenselau C. Surface glycoproteins of Exosomes shed by myeloid-derived suppressor cells contribute to function. J Proteome Res. 2017;16(1):238–46.

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Klymiuk MC, Balz N, Elashry MI, Heimann M, Wenisch S, Arnhold S. Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res. 2019;15(1):42.

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3:10.

  97. 97.

    Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson's disease therapy. J Control Release. 2015;207:18–30.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, et al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32(6):2003–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP. Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res Int. 2018;2018:8545347.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  100. 100.

    Piffoux M, Nicolás-Boluda A, Mulens-Arias V, Richard S, Rahmi G, Gazeau F, et al. Extracellular vesicles for personalized medicine: the input of physically triggered production, loading and theranostic properties. Adv Drug Deliv Rev. 2019;138:247–58.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Blázquez R, Sánchez-Margallo FM, Álvarez V, Usón A, Marinaro F, Casado JG. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia. Acta Biomater. 2018;71:318–29.

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Takov K, Yellon DM, Davidson SM. Comparison of small extracellular vesicles isolated from plasma by ultracentrifugation or size-exclusion chromatography: yield, purity and functional potential. J Extracell Vesicles. 2019;8(1):1560809.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Yang XX, Sun C, Wang L, Guo XL. New insight into isolation, identification techniques and medical applications of exosomes. J Control Release. 2019;308:119–29.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Ludwig AK, De Miroschedji K, Doeppner TR, Börger V, Ruesing J, Rebmann V, et al. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles. 2018;7(1):1528109.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Weng Y, Sui Z, Shan Y, Hu Y, Chen Y, Zhang L, et al. Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst. 2016;141(15):4640–6.

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Yamada T, Inoshima Y, Matsuda T, Ishiguro N. Comparison of methods for isolating exosomes from bovine milk. J Vet Med Sci. 2012;74(11):1523–5.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R. Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles. 2014;3.

  108. 108.

    Vaswani K, Koh YQ, Almughlliq FB, Peiris HN, Mitchell MD. A method for the isolation and enrichment of purified bovine milk exosomes. Reprod Biol. 2017;17(4):341–8.

    PubMed  Article  Google Scholar 

  109. 109.

    Nordin JZ, Lee Y, Vader P, Mäger I, Johansson HJ, Heusermann W, et al. Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. 2015;11(4):879–83.

    CAS  PubMed  Article  Google Scholar 

  110. 110.

    Wu M, Ouyang Y, Wang Z, Zhang R, Huang PH, Chen C, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Gholizadeh S, Shehata Draz M, Zarghooni M, Sanati-Nezhad A, Ghavami S, Shafiee H, et al. Microfluidic approaches for isolation, detection, and characterization of extracellular vesicles: current status and future directions. Biosens Bioelectron. 2017;91:588–605.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Livshits MA, Khomyakova E, Evtushenko EG, Lazarev VN, Kulemin NA, Semina SE, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5:17319.

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A Protocol for Exosome Isolation and Characterization: Evaluation of Ultracentrifugation, Density-Gradient Separation, and Immunoaffinity Capture Methods. Methods Mol Biol. 2015;1295:179–209.

  114. 114.

    Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.

    PubMed  Article  Google Scholar 

  115. 115.

    Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Ovstebo R, et al. Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One. 2018;13(9):e0204276.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  116. 116.

    Taylor DD, Shah S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods. 2015;87:3–10.

    CAS  Article  Google Scholar 

  117. 117.

    Zhao Z, Yang Y, Zeng Y, He M. A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16(3):489–96.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Li P, Kaslan M, Lee SH, Yao J, Gao Z. Progress in exosome isolation techniques. Theranostics. 2017;7(3):789–804.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Kibria G, Ramos EK, Lee KE, Bedoyan S, Huang S, Samaeekia R, et al. A rapid, automated surface protein profiling of single circulating exosomes in human blood. Sci Rep. 2016;6:36502.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Durcin M, Fleury A, Taillebois E, Hilairet G, Krupova Z, Henry C, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 2017;6(1):1305677.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Rupert DLM, Claudio V, Lässer C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subj. 2017;1861(1, Part A):3164–79.

    CAS  PubMed  Article  Google Scholar 

  122. 122.

    Gandham S, Su X, Wood J, Nocera AL, Alli SC, Milane L, et al. Technologies and standardization in research on extracellular vesicles. Trends Biotechnol. 2020;38(10):1066–98.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  123. 123.

    Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Pieragostino D, Lanuti P, Cicalini I, Cufaro MC, Ciccocioppo F, Ronci M, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteome. 2019;204:103403.

    Article  CAS  Google Scholar 

  125. 125.

    Li I, Nabet BY. Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer. 2019;18(1):32.

    PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Wang L, Yang Y, Liu Y, Ning L, Xiang Y, Li G. Bridging exosome and liposome through zirconium-phosphate coordination chemistry: a new method for exosome detection. Chem Comm (Camb). 2019;55(18):2708–11.

    CAS  Article  Google Scholar 

  127. 127.

    Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017;38(6):754–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, López-López R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J Nanobiotechnology. 2019;17(1):85.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129.

    Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med. 2001;7(3):297–303.

    CAS  PubMed  Article  Google Scholar 

  130. 130.

    Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(Pt B):727–37.

    CAS  PubMed  Article  Google Scholar 

  131. 131.

    Li Y, Gao Y, Gong C, Wang Z, Xia Q, Gu F, et al. A33 antibody-functionalized exosomes for targeted delivery of doxorubicin against colorectal cancer. Nanomedicine. 2018;14(7):1973–85.

    CAS  PubMed  Article  Google Scholar 

  132. 132.

    Li YJ, Wu JY, Wang JM, Hu XB, Cai JX, Xiang DX. Gemcitabine loaded autologous exosomes for effective and safe chemotherapy of pancreatic cancer. Acta Biomater. 2020;101:519–30.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Emam SE, Abu Lila AS, Elsadek NE, Ando H, Shimizu T, Okuhira K, et al. Cancer cell-type tropism is one of crucial determinants for the efficient systemic delivery of cancer cell-derived exosomes to tumor tissues. Eur J Pharm Biopharm. 2019;145:27–34.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8–16.

    CAS  PubMed  Article  Google Scholar 

  135. 135.

    Gomari H, Forouzandeh Moghadam M, Soleimani M, Ghavami M, Khodashenas S. Targeted delivery of doxorubicin to HER2 positive tumor models. Int J Nanomedicine. 2019;14:5679–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Parfejevs V, Sagini K, Buss A, Sobolevska K, Llorente A, Riekstina U, et al. Adult Stem Cell-Derived Extracellular Vesicles in Cancer Treatment: Opportunities and Challenges. Cells. 2020;9(5):1171.

  137. 137.

    Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther. 2015;23(5):812–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Kosztowski T, Zaidi HA, Quinones-Hinojosa A. Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Rev Anticancer Ther. 2009;9(5):597–612.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Shojaei S, Hashemi SM, Ghanbarian H, Salehi M, Mohammadi-Yeganeh S. Effect of mesenchymal stem cells-derived exosomes on tumor microenvironment: tumor progression versus tumor suppression. J Cell Physiol. 2019;234(4):3394–409.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Yeo RW, Lai RC, Zhang B, Tan SS, Yin Y, Teh BJ, et al. Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery. Adv Drug Deliv Rev. 2013;65(3):336–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  141. 141.

    Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6(1):127.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release. 2014;192:262–70.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):557–63.

    CAS  PubMed  Article  Google Scholar 

  144. 144.

    Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine. 2019;14:2847–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. 145.

    Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 2019;94:482–94.

    CAS  PubMed  Article  Google Scholar 

  146. 146.

    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3(1):9.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. 147.

    Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5(4):e1071008.

    PubMed  Article  CAS  Google Scholar 

  148. 148.

    Escudier B, Dorval T, Chaput N, André F, Caby MP, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. 149.

    Veerman RE, Güçlüler Akpinar G, Eldh M, Gabrielsson S. Immune cell-derived extracellular vesicles – functions and therapeutic applications. Trends Mol Med. 2019;25(5):382–94.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L, et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun. 2013;4:1867.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  151. 151.

    Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13(5):1627–36.

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Aqil F, Munagala R, Jeyabalan J, Agrawal AK, Kyakulaga AH, Wilcher SA, et al. Milk exosomes - natural nanoparticles for siRNA delivery. Cancer Lett. 2019;449:186–95.

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Betker JL, Angle BM, Graner MW, Anchordoquy TJ. The potential of Exosomes from cow Milk for Oral delivery. J Pharm Sci. 2019;108(4):1496–505.

    CAS  PubMed  Article  Google Scholar 

  154. 154.

    Munagala R, Aqil F, Jeyabalan J, Gupta RC. Bovine milk-derived exosomes for drug delivery. Cancer Lett. 2016;371(1):48–61.

    CAS  PubMed  Article  Google Scholar 

  155. 155.

    Semreen MH, Alniss HY, Mousa MK, El-Awady R, Khan F, Al-Rub KA. Quantitative determination of doxorubicin in the exosomes of A549/MCF-7 cancer cells and human plasma using ultra performance liquid chromatography-tandem mass spectrometry. Saudi Pharm J. 2018;26(7):1027–34.

    PubMed  PubMed Central  Article  Google Scholar 

  156. 156.

    Kalani A, Chaturvedi P, Kamat PK, Maldonado C, Bauer P, Joshua IG, et al. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol. 2016;79:360–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  157. 157.

    Garofalo M, Villa A, Rizzi N, Kuryk L, Rinner B, Cerullo V, et al. Extracellular vesicles enhance the targeted delivery of immunogenic oncolytic adenovirus and paclitaxel in immunocompetent mice. J Control Release. 2019;294:165–75.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35(7):2383–90.

    CAS  PubMed  Article  Google Scholar 

  159. 159.

    Kashkouli KI, Torkzadeh-Mahani M, Mosaddegh E. Synthesis and characterization of a novel organosilane-functionalized chitosan nanocarrier as an efficient gene delivery system: expression of green fluorescent protein. Int J Biol Macromol. 2019;125:143–8.

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Jhan YY, Prasca-Chamorro D, Palou Zuniga G, Moore DM, Arun Kumar S, Gaharwar AK, et al. Engineered extracellular vesicles with synthetic lipids via membrane fusion to establish efficient gene delivery. Int J Pharm. 2020;573:118802.

    CAS  PubMed  Article  Google Scholar 

  161. 161.

    Cho E, Nam GH, Hong Y, Kim YK, Kim DH, Yang Y, et al. Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. J Control Release. 2018;279:326–35.

    CAS  PubMed  Article  Google Scholar 

  162. 162.

    Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14(1):195–204.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. 164.

    Limoni SK, Moghadam MF, Moazzeni SM, Gomari H, Salimi F. Engineered Exosomes for targeted transfer of siRNA to HER2 positive breast Cancer cells. Appl Biochem. 2019;187(1):352–64.

    CAS  Article  Google Scholar 

  165. 165.

    Yang Z, Xie J, Zhu J, Kang C, Chiang C, Wang X, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release. 2016;243:160–71.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  166. 166.

    Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Yu T, Wang X, Zhi T, Zhang J, Wang Y, Nie E, et al. Delivery of MGMT mRNA to glioma cells by reactive astrocyte-derived exosomes confers a temozolomide resistance phenotype. Cancer Lett. 2018;433:210–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. 168.

    Munoz JL, Bliss SA, Greco SJ, Ramkissoon SH, Ligon KL, Rameshwar P. Delivery of functional anti-miR-9 by Mesenchymal stem cell-derived Exosomes to Glioblastoma Multiforme cells conferred Chemosensitivity. Mol Ther Nucleic Acids. 2013;2(10):e126.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  169. 169.

    Li Z, Wang H, Yin H, Bennett C, Zhang HG, Guo P. Arrowtail RNA for ligand display on ginger exosome-like Nanovesicles to systemic deliver siRNA for Cancer suppression. Sci Rep. 2018;8(1):14644.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  170. 170.

    Ding Y, Cao F, Sun H, Wang Y, Liu S, Wu Y, et al. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett. 2019;442:351–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. 171.

    Greco KA, Franzen CA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN. PLK-1 Silencing in Bladder Cancer by siRNA Delivered With Exosomes. Urology. 2016;91:241.e1–7.

    Article  Google Scholar 

  172. 172.

    Dai S, Wei D, Wu Z, Zhou X, Wei X, Huang H, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther. 2008;16(4):782–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. 173.

    Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, Figg WD, et al. Exosome is a mechanism of intercellular drug transfer: application of quantitative pharmacology. J Control Release. 2017;268:147–58.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  174. 174.

    Akao Y, Iio A, Itoh T, Noguchi S, Itoh Y, Ohtsuki Y, et al. Microvesicle-mediated RNA molecule delivery system using monocytes/macrophages. Mol Ther. 2011;19(2):395–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.

    CAS  PubMed  Article  Google Scholar 

  176. 176.

    Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2017;312(1):L110–L21.

    PubMed  Article  Google Scholar 

  177. 177.

    Yang M, Wu SY. The advances and challenges in utilizing Exosomes for delivering Cancer therapeutics. Front Pharmacol. 2018;9:735.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  178. 178.

    Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like nanoparticles: a new type of Nanocarrier. Curr Med Chem. 2020;27(23):3888–905.

    CAS  PubMed  Article  Google Scholar 

  179. 179.

    Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, et al. Exosomes as a next-generation drug delivery system: an update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater. 2020;113:42–62.

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Smyth T, Petrova K, Payton NM, Persaud I, Redzic JS, Graner MW, et al. Surface functionalization of exosomes using click chemistry. Bioconjug Chem. 2014;25(10):1777–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M. A comprehensive overview of exosomes as drug delivery vehicles - endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta. 2014;1846(1):75–87.

    CAS  PubMed  Google Scholar 

  182. 182.

    Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids. 2017;7:278–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  183. 183.

    Das CK, Jena BC, Banerjee I, Das S, Parekh A, Bhutia SK, et al. Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol Pharm. 2019;16(1):24–40.

    CAS  PubMed  Article  Google Scholar 

  184. 184.

    Xu Q, Zhang Z, Zhao L, Qin Y, Cai H, Geng Z, et al. Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B-cell malignancies. J Control Release. 2020;326:455–67.

    CAS  PubMed  Article  Google Scholar 

  185. 185.

    Cabeza L, Perazzoli G, Peña M, Cepero A, Luque C, Melguizo C, et al. Cancer therapy based on extracellular vesicles as drug delivery vehicles. J Control Release. 2020;327:296–315.

    CAS  PubMed  Article  Google Scholar 

  186. 186.

    Viaud S, Ploix S, Lapierre V, Théry C, Commere PH, Tramalloni D, et al. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ. J Immunother. 2011;34(1):65–75.

    PubMed  Article  Google Scholar 

  187. 187.

    El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, et al. Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc. 2012;7(12):2112–26.

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    Momen-Heravi F, Balaj L, Alian S, Mantel PY, Halleck AE, Trachtenberg AJ, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394(10):1253–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  189. 189.

    Melling GE, Carollo E, Conlon R, Simpson JC, Carter DRF. The challenges and possibilities of extracellular vesicles as therapeutic vehicles. Eur J Pharm Biopharm. 2019;144:50–6.

    CAS  PubMed  Article  Google Scholar 

  190. 190.

    Ren K. Exosomes in perspective: a potential surrogate for stem cell therapy. Odontology. 2019;107(3):271–84.

    CAS  PubMed  Article  Google Scholar 

  191. 191.

    Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. AAPS J. 2017;20(1):1.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  192. 192.

    Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9:19.

    PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    García-Manrique P, Gutiérrez G, Blanco-López MC. Fully artificial Exosomes: towards new Theranostic biomaterials. Trends Biotechnol. 2018;36(1):10–4.

    PubMed  Article  CAS  Google Scholar 

  194. 194.

    Yoon J, Jo W, Jeong D, Kim J, Jeong H, Park J. Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery. Biomaterials. 2015;59:12–20.

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Jo W, Jeong D, Kim J, Cho S, Jang SC, Han C, et al. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 2014;14(7):1261–9.

    CAS  PubMed  Article  Google Scholar 

  196. 196.

    Li SP, Lin ZX, Jiang XY, Yu XY. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin. 2018;39(4):542–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. 197.

    Li K, Chang S, Wang Z, Zhao X, Chen D. A novel micro-emulsion and micelle assembling method to prepare DEC205 monoclonal antibody coupled cationic nanoliposomes for simulating exosomes to target dendritic cells. Int J Pharm. 2015;491(1–2):105–12.

    CAS  PubMed  Article  Google Scholar 

  198. 198.

    Lentz BR, Lee JK. Poly(ethylene glycol) (PEG)-mediated fusion between pure lipid bilayers: a mechanism in common with viral fusion and secretory vesicle release? Mol Membr Biol. 1999;16(4):279–96.

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Lentz BR. PEG as a tool to gain insight into membrane fusion. Eur Biophys J. 2007;36(4–5):315–26.

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Papahadjopoulos D, Vail WJ, Newton C, Nir S, Jacobson K, Poste G, et al. Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim Biophys Acta. 1977;465(3):579–98.

    CAS  PubMed  Article  Google Scholar 

  201. 201.

    Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 1987;24(4):324–31.

    CAS  PubMed  Article  Google Scholar 

  202. 202.

    Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, et al. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:21933.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  203. 203.

    Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of extracellular vesicles by fusion with liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano. 2018;12(7):6830–42.

    CAS  PubMed  Article  Google Scholar 

  204. 204.

    Lu M, Huang Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials. 2020;242:119925.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zimei Wu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geng, T., Pan, P., Leung, E. et al. Recent Advancement and Technical Challenges in Developing Small Extracellular Vesicles for Cancer Drug Delivery. Pharm Res (2021). https://doi.org/10.1007/s11095-021-02988-z

Download citation

KEY WORDS

  • biogenesis
  • cancer drug delivery
  • drug loading
  • functionalisation
  • small extracellular vesicles