Improving Tabletability of Excipients by Metal-Organic Framework-Based Cocrystallization: a Study of Mannitol and CaCl2

Abstract

Purpose

To improve tabletability of pharmaceutical excipient mannitol by forming cocrystal with metal-organic framework (MOF) structure.

Methods

Mannitol was cocrystallized with CaCl2 by slurry method and solvent evaporation method. The obtained cocrystal was characterized by SCXRD, PXRD, and thermal analysis. Comparative study on tabletability between cocrystal and β-mannitol were then conducted. Differences in tabletability were subsequently analyzed using the bonding area-bonding strength (BA-BS) model and correlated with their crystal structures.

Results

The prepared cocrystal contains mannitol, CaCl2 and water in molar ratio of 1:1:2 (i.e. mannitol·CaCl2·2H2O) and all the Ca2+ in the cocrystal are linked together by mannitol molecules through an infinite coordination network, demonstrating a typical MOF structure. Compared with β-mannitol, such MOF-based cocrystal showed improved tabletability (~2-fold increased tensile strength) and reduced lamination tendency (~3-fold increased minimum compaction pressure to occur lamination). The tabletability improvement of cocrystal was dominated by its higher BS, which is attributed to stronger intermolecular interactions. The reduced lamination tendency was attributed to its lower in-die elastic recovery than β-mannitol.

Conclusions

MOF-based cocrystallization will be a promising and valuable approach to tailor mechanical properties of pharmaceutical materials in order to achieve better pharmaceutical performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

BA:

Bonding area

BS:

Bonding strength

CCDC:

Cambridge Crystallographic Data Centre

CSD:

Cambridge Structural Database

DFT:

Density function theory

DSC:

Differential scanning calorimetry

DVS:

Dynamic vapor sorption

ICSD:

Inorganic Crystal Structure Database

MOF:

Metal-organic framework

PXRD:

Powder X-ray diffraction

SCXRD:

Single crystal X-ray diffraction

TGA:

Thermal gravimetric analysis

References

  1. 1.

    Osei-Yeboah F, Sun CC. Tabletability modulation through surface engineering. J Pharm Sci. 2015;104(8):2645–8.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Wang C, Sun CC. Computational techniques for predicting mechanical properties of organic crystals: a systematic evaluation. Mol Pharm. 2019;16(4):1732–41.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Saha S, Mishra MK, Reddy CM, Desiraju GR. From molecules to interactions to crystal engineering: mechanical properties of organic solids. Acc Chem Res. 2018;51(11):2957–67.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Chattoraj S, Sun CC. Crystal and particle engineering strategies for improving powder compression and flow properties to enable continuous tablet manufacturing by direct compression. J Pharm Sci. 2018;107(4):968–74.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Bryant MJ, Maloney AGP, Sykes RA. Predicting mechanical properties of crystalline materials through topological analysis. CrystEngComm. 2018;20(19):2698–704.

    CAS  Article  Google Scholar 

  6. 6.

    Sanphui P, Mishra MK, Ramamurty U, Desiraju GR. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals: voriconazole as a case study. Mol Pharm. 2015;12(3):889–97.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Tarlier N, Soulairol I, Sanchez-Ballester N, Baylac G, Aubert A, Lefevre P, et al. Deformation behavior of crystallized mannitol during compression using a rotary tablet press simulator. Int J Pharm. 2018;547(1–2):142–9.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Osei-Yeboah F, Chang S-Y, Sun CC. A critical examination of the phenomenon of bonding area-bonding strength interplay in powder tableting. Pharm Res. 2016;33(5):1126–32.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Sun CC. Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol. 2012;25(4–5):483–99.

    Google Scholar 

  10. 10.

    Wang C, Paul S, Wang K, Hu S, Sun CC. Relationships among crystal structures, mechanical properties, and tableting performance probed using four salts of diphenhydramine. Cryst Growth Des. 2017;17(11):6030–40.

    CAS  Article  Google Scholar 

  11. 11.

    Wang C, Hu S, Sun CC. Expedited development of diphenhydramine orally disintegrating tablet through integrated crystal and particle engineering. Mol Pharm. 2017;14(10):3399–408.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Chen H, Wang C, Sun CC. Profoundly improved plasticity and tabletability of griseofulvin by in situ solvation and desolvation during spherical crystallization. Cryst Growth Des. 2019;19(4):2350–7.

    CAS  Article  Google Scholar 

  13. 13.

    Vromans H, Bolhuis GK, Lerk CF, van de Biggelaar H, Bosch H. Studies on tableting properties of lactose. VII. The effect of variations in primary particle size and percentage of amorphous lactose in spray dried lactose products. Int J Pharm. 1987;35(1):29–37.

    CAS  Article  Google Scholar 

  14. 14.

    Shi L, Sun CC. Overcoming poor tabletability of pharmaceutical crystals by surface modification. Pharm Res. 2011;28(12):3248–55.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Jain S. Mechanical properties of powders for compaction and tableting: an overview. Pharm Sci Technol Today. 1999;2(1):20–31.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Khomane KS, More PK, Raghavendra G, Bansal AK. Molecular understanding of the compaction behavior of indomethacin polymorphs. Mol Pharm. 2013;10(2):631–9.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Thipparaboina R, Kumar D, Mittapalli S, Balasubramanian S, Nangia A, Shastri NR. Ionic, neutral, and hybrid acid-base crystalline adducts of lamotrigine with improved pharmaceutical performance. Cryst Growth Des. 2015;15(12):5816–26.

    CAS  Article  Google Scholar 

  18. 18.

    Chow SF, Chen M, Shi L, Chow AHL, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res. 2012;29(7):1854–65.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Chang S-Y, Sun CC. Superior plasticity and tabletability of theophylline monohydrate. Mol Pharm. 2017;14(6):2047–55.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Beth YA, Dherya B, Lewis SL. Understanding the tabletability differences between indomethacin polymorphs using powder brillouin light scattering. Pharm Res. 2019;36(10):150.

    Article  CAS  Google Scholar 

  21. 21.

    Khomane KS, More PK, Bansal AK. Counterintuitive compaction behavior of clopidogrel bisulfate polymorphs. J Pharm Sci. 2012;101(7):2408–16.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Roberts RJ, Rowe RC. Influence of polymorphism on the Young’s modulus and yield stress of carbmazepine, sulfathiazole and sulfanilamide. Int J Pharm. 1996;129(1):79–94.

    CAS  Article  Google Scholar 

  23. 23.

    Upadhyay P, Khomane KS, Kumar L, Bansal AK. Relationship between crystal structure and mechanical properties of ranitidine hydrochloride polymorphs. CrystEngComm. 2013;15(19):3959–64.

    CAS  Article  Google Scholar 

  24. 24.

    Yadav JPA, Yadav B, Kumar N, Bansal AK, Jain S. Revealing the role of structural features in bulk mechanical performance of ternary molecular solids of isoniazid. Mol Pharm. 2018;15(11):5252–62.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Upadhyay PP, Sun CC, Bond AD. Relating the tableting behavior of piroxicam polytypes to their crystal structures using energy-vector models. Int J Pharm. 2018;543(1–2):46–51.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Singaraju AB, Nguyen K, Swenson DC, Iyer M, Haware RV, Stevens LL. Reorganized, weak C-H···O interactions directly modify the mechanical properties and compaction performance of a series of nitrobenzoic acids. CrystEngComm. 2017;19(18):2526–35.

    CAS  Article  Google Scholar 

  27. 27.

    Sun C, Grant DJW. Improved tableting properties of p-hydroxybenzoic acid by water of crystallization: a molecular insight. Pharm Res. 2004;21(2):382–6.

    PubMed  Article  Google Scholar 

  28. 28.

    Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Moosavi SM, Chidambaram A, Talirz L, Haranczyk M, Stylianou KC, Smit B. Capturing chemical intuition in synthesis of metal-organic frameworks. Nat Commun. 2019;10(1):539.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. Reticular synthesis and the design of new materials. Nature. 2003;423(6941):705–14.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Wu M, Yang Y. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv Mater. 2017;29(23):1606134.

    Article  CAS  Google Scholar 

  32. 32.

    Shemchuk O, Esposti LD, Grepioni F, Braga D. Ionic co-crystals of enantiopure and racemic histidine with calcium halides. CrystEngComm. 2017;19(42):6267–73.

    CAS  Article  Google Scholar 

  33. 33.

    Grepioni F, Wouters J, Braga D, Nanna S, Fours B, Coquerel G, et al. Ionic co-crystals of racetams: solid-state properties enhancement of neutral active pharmaceutical ingredients via addition of Mg2+ and Ca2+ chlorides. CrystEngComm. 2014;16(26):5887–96.

    CAS  Article  Google Scholar 

  34. 34.

    Braga D, Grepioni F, Lampronti GI, Maini L, Turrina A. Ionic co-crystals of organic molecules with metal halides: a new prospect in the solid formulation of active pharmaceutical ingredients. Cryst Growth Des. 2011;11(12):5621–7.

    CAS  Article  Google Scholar 

  35. 35.

    Shemchuk O, Song L, Tumanov N, Wouters J, Braga D, Grepioni F, et al. Chiral resolution of RS-oxiracetam upon cocrystallization with pharmaceutically acceptable inorganic salts. Cryst Growth Des. 2020;20(4):2602–7.

    CAS  Article  Google Scholar 

  36. 36.

    Braga D, Shemchuk O, Grepioni F. Organic-inorganic ionic co-crystals: a new class of multipurpose compounds. CrystEngComm. 2018;20(16):2212–20.

    CAS  Article  Google Scholar 

  37. 37.

    Ohrem HL, Schornick E, Kalivoda A, Ognibene R. Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharm Dev Technol. 2014;19(3):257–62.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Koner JS, Rajabi-Siahboomi A, Bowen J, Perrie Y, Kirby D, Mohammed AR. A holistic multi evidence approach to study the fragmentation behaviour of crystalline mannitol. Sci Rep. 2015;5:16352.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Fronczek FR, Kamel HN, Slattery M. Three polymorphs (α, β, and δ) of D-mannitol at 100 K. Acta Crystallogr Sect C: Cryst Struct Commun. 2001;59(10):o567–70.

    Article  CAS  Google Scholar 

  40. 40.

    Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc. 1938;60(2):309–19.

    CAS  Article  Google Scholar 

  41. 41.

    Hall SR, Allen FH, Brown ID. The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr Sect A. 1991;47(6):655–85.

    Article  Google Scholar 

  42. 42.

    Darwish S, Zeglinski J, Krishna GR, Shaikh R, Khraisheh M, Walker GM, et al. A new 1:1 drug-drug cocrystal of theophylline and aspirin: discovery, characterization, and construction of ternary phase diagrams. Cryst Growth Des. 2018;18(12):7526–32.

    CAS  Article  Google Scholar 

  43. 43.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D01.Gaussian, Inc.; Wallingford CT,2013.

  44. 44.

    Schwabe T, Grimme S. Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys. 2007;9(26):3397–406.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297–305.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem. 2011;32(7):1456–65.

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys. 2017;19(48):32184–215.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Padrela L, Zeglinski J, Ryan KM. Insight into the role of additives in controlling polymorphic outcome: a CO2-antisolvent crystallization process of carbamazepine. Cryst Growth Des. 2017;17(9):4544–53.

    CAS  Article  Google Scholar 

  49. 49.

    Ngo V, da Silva MC, Kubillus M, Li H, Roux B, Elstner M, et al. Quantum effects in cation interactions with first and second coordination shell ligands in metalloproteins. J Chem Theory Comput. 2015;11(10):4992–5001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Berski S, Durlak P. Dimeric nature of N-coordinated mg and Ca ions in metaloorganic compounds. The topological analysis of ELF functions for mg–mg and Ca–Ca bonds. Polyhedron. 2017;129:22–9.

    CAS  Article  Google Scholar 

  51. 51.

    Bousquet D, Brémond E, Sancho-García JC, Ciofini I, Adamo C. Is there still room for parameter free double hybrids? Performances of PBE0-DH and B2PLYP over extended benchmark sets. J Chem Theory Comput. 2013;9(8):3444–52.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys. 1970;19(4):553–66.

    CAS  Article  Google Scholar 

  53. 53.

    Grimme S, Steinmetz M. Effects of London dispersion correction in density functional theory on the structures of organic molecules in the gas phase. Phys Chem Chem Phys. 2013;15(38):16031–42.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Burns LA, Mayagoitia ÁV, Sumpter BG, Sherrill CD. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J Chem Phys. 2011;134(8):084107.

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Plumley JA, Dannenberg JJ. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error. J Comput Chem. 2011;32(8):1519–27.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Penocchio E, Piccardo M, Barone V. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route. J Chem Theory Comput. 2015;11(10):4689–707.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA. 6-31G* basis set for third-row atoms. J Comput Chem. 2001;22(9):976–84.

    CAS  Article  Google Scholar 

  58. 58.

    Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098–100.

    CAS  Article  Google Scholar 

  59. 59.

    Yoshinari T, Forbes RT, York P, Kawashima Y. Moisture induced polymorphic transition of mannitol and its morphological transformation. Int J Pharm. 2002;247(1):69–77.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Erhardt D, Mecklenburg M. Relative humidity re-examined. Stud Conserv. 1994;39(sup2):32–38.

  61. 61.

    Dheu-Andries ML, Pérez S. Geometrical features of calcium-carbohydrate interactions. Carbohydr Res. 1983;124(2):324–32.

    CAS  Article  Google Scholar 

  62. 62.

    Oertling H. Interactions of alkali- and alkaline earth-halides with carbohydrates in the crystalline state-the overlooked salt and sugar cocrystals. CrystEngComm. 2016;18(10):1676–92.

    CAS  Article  Google Scholar 

  63. 63.

    Yadav JA, Khomane KS, Modi SR, Ugale B, Yadav RN, Nagaraja CM, et al. Correlating single crystal structure, nanomechanical, and bulk compaction behavior of febuxostat polymorphs. Mol Pharm. 2017;14(3):866–74.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Sun CC. Materials science tetrahedron-a useful tool for pharmaceutical research and development. J Pharm Sci. 2009;98(5):1671–87.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8(5):1575–9.

    CAS  Article  Google Scholar 

  66. 66.

    Joshi TV, Singaraju AB, Shah HS, Morris KR, Stevens LL, Haware RV. Structure–mechanics and compressibility profile study of flufenamic acid:nicotinamide cocrystal. Cryst Growth Des. 2018;18(10):5853–65.

    CAS  Article  Google Scholar 

  67. 67.

    Beyer T, Day GM, Price SL. The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. J Am Chem Soc. 2001;123(21):5086–94.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Burger A, Henck JO, Hetz S, Rollinger JM, Weissnicht AA, Stottner H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J Pharm Sci. 2000;89(4):457–68.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Paul S, Chang SY, Dun J, Su WJ, Wang K, Tajarobi P, et al. Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades. Int J Pharm. 2018;546(1–2):39–49.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jianjun Zhang or Yuan Gao or Shuai Qian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1313 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, H., Wei, Y., Wang, S. et al. Improving Tabletability of Excipients by Metal-Organic Framework-Based Cocrystallization: a Study of Mannitol and CaCl2. Pharm Res 37, 130 (2020). https://doi.org/10.1007/s11095-020-02850-8

Download citation

Key Words

  • bonding strength
  • cocrystal
  • Mannitol
  • MOF
  • tabletability