Enhancement of Liposomal Plasmid DNA and siRNA Delivery by Itraconazole through Intracellular Cholesterol Accumulation



Efficient and safe vehicle that can enhance gene transfer is still needed. Since intracellular cholesterol is known to have an important role in gene delivery and itraconazole alters intracellular cholesterol trafficking, we investigated the effect of itraconazole on pDNA and siRNA delivery.


The pDNA and Bcl2 siRNA transfection efficiency was measured by luciferase assay and cytotoxicity. Cellular cholesterol was observed using filipin staining, and intracellular uptake was analyzed by flow cytometry. Lipoplex localization was observed by fluorescent labeling of DNA and lysosome after treatment of itraconazole or co-treatment of itraconazole and bafilomycin A1.


Itraconazole enhanced the transfection efficiency of pDNA and siRNA compared to that of control through the accumulation of cholesterol. Bafilomycin A1 diminished the effect of itraconazole on gene delivery and the increment of cholesterol. Itraconazole did not increase the cellular uptake of lipoplex, but increased free pDNA during the endosome-lysosome pathway was observed during the endosome-lysosome pathway. Treating cells with both imipramine and itraconazole caused an additive effect in pDNA and siRNA delivery.


Itraconazole enhanced gene delivery of pDNA and siRNA, and it can be used to potentiate nucleic acid therapeutics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



Bafilomycine A1






Scrambled siRNA


  1. 1.

    Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future. Anal Bioanal Chem. 2010;397(8):3173–8.

    CAS  Article  Google Scholar 

  2. 2.

    Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of controlled release : official journal of the Controlled Release Society. 2006;114(1):100–9.

    CAS  Article  Google Scholar 

  3. 3.

    Ledley FD. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum Gene Ther. 1995;6(9):1129–44.

    CAS  Article  Google Scholar 

  4. 4.

    Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.

    CAS  Article  Google Scholar 

  5. 5.

    Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine Transcarbamylase deficiency. Hum Gene Ther. 2002;13(1):163–75.

    CAS  Article  Google Scholar 

  6. 6.

    Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent Progress. AAPS J. 2009;11(4):671–81.

    CAS  Article  Google Scholar 

  7. 7.

    Koloskova OO, Gileva AM, Drozdova MG, Grechihina MV, Suzina NE, Budanova UA, et al. Effect of lipopeptide structure on gene delivery system properties: evaluation in 2D and 3D in vitro models. Colloid Surface B. 2018;167:328–36.

    CAS  Article  Google Scholar 

  8. 8.

    Kim BK, Seu YB, Bae YU, Kwak TW, Kang H, Moon IJ, et al. Efficient delivery of plasmid DNA using cholesterol-based cationic lipids containing polyamines and ether linkages. Int J Mol Sci. 2014;15(5):7293–312.

    CAS  Article  Google Scholar 

  9. 9.

    Kim BK, Doh KO, Hwang GB, Seu YB. Transfection property of a new cholesterol-based cationic lipid containing tri-2-hydroxyethylamine as gene delivery vehicle. J Microbiol Biotechnol. 2012;22(6):866–71.

    CAS  Article  Google Scholar 

  10. 10.

    Satyal U, Draghici B, Dragic LL, Zhang QN, Norris KW, Madesh M, et al. Interfacially engineered Pyridinium Pseudogemini surfactants as versatile and efficient Supramolecular delivery systems for DNA, siRNA, and mRNA. Acs Appl Mater Inter. 2017;9(35):29481–95.

    CAS  Article  Google Scholar 

  11. 11.

    Li D, Sharili AS, Connelly J, Gautrot JE. Highly stable RNA capture by dense cationic polymer brushes for the Design of Cytocompatible. Serum-Stable SiRNA Delivery Vectors Biomacromolecules. 2018;19(2):606–15.

    CAS  PubMed  Google Scholar 

  12. 12.

    Cordeiro RA, Santo D, Farinha D, Serra A, Faneca H, Coelho JFJ. High transfection efficiency promoted by tailor-made cationic tri-block copolymer-based nanoparticles. Acta Biomater. 2017;47:113–23.

    CAS  Article  Google Scholar 

  13. 13.

    Shi B, Zheng M, Tao W, Chung R, Jin D, Ghaffari D, et al. Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromolecules. 2017;18(8):2231–46.

    CAS  Article  Google Scholar 

  14. 14.

    Hao X, Li Q, Lv J, Yu L, Ren X, Zhang L, et al. CREDVW-linked polymeric micelles as a targeting gene transfer vector for selective transfection and proliferation of endothelial cells. ACS Appl Mater Interfaces. 2015;7(22):12128–40.

    CAS  Article  Google Scholar 

  15. 15.

    Wang W, Balk M, Deng Z, Wischke C, Gossen M, Behl M, et al. Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. Journal of controlled release : official journal of the Controlled Release Society. 2016;242:71–9.

    CAS  Article  Google Scholar 

  16. 16.

    Shcharbin D, Shakhbazau A, Bryszewska M. Poly(amidoamine) dendrimer complexes as a platform for gene delivery. Expert Opin Drug Del. 2013;10(12):1687–98.

    CAS  Article  Google Scholar 

  17. 17.

    Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.

    Article  Google Scholar 

  18. 18.

    Inoh Y, Nagai M, Matsushita K, Nakanishi M, Furuno T. Gene transfection efficiency into dendritic cells is influenced by the size of cationic liposomes/DNA complexes. Eur J Pharm Sci. 2017;102:230–6.

    CAS  Article  Google Scholar 

  19. 19.

    Kubota K, Onishi K, Sawaki K, Li T, Mitsuoka K, Sato T, et al. Effect of the nanoformulation of siRNA-lipid assemblies on their cellular uptake and immune stimulation. Int J Nanomedicine. 2017;12:5121–33.

    CAS  Article  Google Scholar 

  20. 20.

    Kim BK, Hwang GB, Seu YB, Choi JS, Jin KS, Doh KO. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim Biophys Acta. 2015;1848(10 Pt A):1996–2001.

    CAS  Article  Google Scholar 

  21. 21.

    Douglas KL, Piccirillo CA, Tabrizian M. Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur J Pharm Biopharm. 2008;68(3):676–87.

    CAS  Article  Google Scholar 

  22. 22.

    Izumisawa T, Hattori Y, Date M, Toma K, Maitani Y. Cell line-dependent internalization pathways determine DNA transfection efficiency of decaarginine-PEG-lipid. Int J Pharm. 2011;404(1–2):264–70.

    CAS  Article  Google Scholar 

  23. 23.

    Bae YU, Huh JW, Kim BK, Park HY, Seu YB, Doh KO. Enhancement of liposome mediated gene transfer by adding cholesterol and cholesterol modulating drugs. Biochim Biophys Acta. 2016;1858(12):3017–23.

    CAS  Article  Google Scholar 

  24. 24.

    Cenedella RJ. Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids. 2009;44(6):477–87.

    CAS  Article  Google Scholar 

  25. 25.

    Millard EE, Srivastava K, Traub LM, Schaffer JE, Ory DS. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis. J Biol Chem. 2000;275(49):38445–51.

    CAS  Article  Google Scholar 

  26. 26.

    Eltoukhy AA, Sahay G, Cunningham JM, Anderson DG. Niemann-pick C1 affects the gene delivery efficacy of degradable polymeric nanoparticles. ACS Nano. 2014;8(8):7905–13.

    CAS  Article  Google Scholar 

  27. 27.

    Trinh MN, Lu F, Li X, Das A, Liang Q, De Brabander JK, et al. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1. Proc Natl Acad Sci U S A. 2017;114(1):89–94.

    CAS  Article  Google Scholar 

  28. 28.

    Tsubamoto H, Ueda T, Inoue K, Sakata K, Shibahara H, Sonoda T. Repurposing itraconazole as an anticancer agent. Oncol Lett. 2017;14(2):1240–6.

    Article  Google Scholar 

  29. 29.

    Head SA, Shi WQ, Yang EJ, Nacev BA, Hong SY, Pasunooti KK, et al. Simultaneous targeting of NPC1 and VDAC1 by Itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis. ACS Chem Biol. 2017;12(1):174–82.

    CAS  Article  Google Scholar 

  30. 30.

    Li X, Wang J, Coutavas E, Shi H, Hao Q, Blobel G. Structure of human Niemann-pick C1 protein. Proc Natl Acad Sci U S A. 2016;113(29):8212–7.

    CAS  Article  Google Scholar 

  31. 31.

    Kuzu OF, Gowda R, Noory MA, Robertson GP. Modulating cancer cell survival by targeting intracellular cholesterol transport. Br J Cancer. 2017;117(4):513–24.

    Article  Google Scholar 

  32. 32.

    Yang ST, Kreutzberger AJB, Lee J, Kiessling V, Tamm LK. The role of cholesterol in membrane fusion. Chem Phys Lipids. 2016;199:136–43.

    CAS  Article  Google Scholar 

  33. 33.

    Zhang J, Xue R, Ong WY, Chen P. Roles of cholesterol in vesicle fusion and motion. Biophys J. 2009;97(5):1371–80.

    CAS  Article  Google Scholar 

  34. 34.

    Imelli N, Meier O, Boucke K, Hemmi S, Greber UF. Cholesterol is required for endocytosis and endosomal escape of adenovirus type 2. J Virol. 2004;78(6):3089–98.

    CAS  Article  Google Scholar 

  35. 35.

    Jeon JH, Lee C. Cellular cholesterol is required for porcine nidovirus infection. Arch Virol. 2017;162(12):3753–67.

    CAS  Article  Google Scholar 

  36. 36.

    Koster F, Schroder A, Finas D, Hauser C, Diedrich K, Felberbaum R. Cell-specific enhancement of liposomal transfection by steroids in steroid receptor expressing cells. Int J Mol Med. 2006;18(6):1201–5.

    PubMed  Google Scholar 

  37. 37.

    Zidovska A, Evans HM, Ahmad A, Ewert KK, Safinya CR. The role of cholesterol and structurally related molecules in enhancing transfection of cationic liposome-DNA complexes. J Phys Chem B. 2009;113(15):5208–16.

    CAS  Article  Google Scholar 

  38. 38.

    Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997;73(1):267–76.

    CAS  Article  Google Scholar 

  39. 39.

    Underwood KW, Andemariam B, McWilliams GL, Liscum L. Quantitative analysis of hydrophobic amine inhibition of intracellular cholesterol transport. J Lipid Res. 1996;37(7):1556–68.

    CAS  PubMed  Google Scholar 

Download references


This work was supported by the 2016 Yeungnam University Research Grant.

Author information




S. Ira and J.S. Choi took part in all experiments. Y.U. Bae did some experiments. K.O. Doh planned the study and wrote the manuscript.

Corresponding author

Correspondence to Kyung-Oh Doh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 7482 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shrestha, I., Choi, J., Bae, Y. et al. Enhancement of Liposomal Plasmid DNA and siRNA Delivery by Itraconazole through Intracellular Cholesterol Accumulation. Pharm Res 37, 126 (2020). https://doi.org/10.1007/s11095-020-02846-4

Download citation

Key Words

  • Bcl2 siRNA
  • endosomal escape
  • gene delivery
  • itraconazole