Skip to main content
Log in

Mucins are Involved in the Intestinal Permeation of Lipophilic Drugs in the Proximal Region of Rat Small Intestine

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Mucins are the principal glycoproteins in mucus and have been implicated in the limitation of intestinal drug absorption; however, the contribution of these molecules to intestinal drug absorption remains unclear. In this study, the relationship between the effect of the mucus layer on intestinal drug permeation and mucin distribution in different parts of the rat gastrointestinal tract was evaluated.

Methods

The intestinal permeability of various lipophilic drugs in rat small intestine was evaluated using the in vitro sac method. The expression profiles of mucin mRNA and proteins were evaluated by quantitative real-time RT-PCR and western blotting, respectively.

Results

The intestinal permeability of griseofulvin and antipyrine was enhanced by dithiothreitol (DTT) treatment in the proximal small intestine, such as duodenum and jejunum, but not in the distal regions. The mRNA expression analysis of rat mucin genes revealed that the intestinal expression of Muc5ac was considerably higher in the duodenum, whereas that of Muc1, Muc2, and Muc3A was gradually increased toward the lower intestine. In addition, Muc5ac protein was detected only in the luminal fluids from the proximal small intestine after DTT treatment.

Conclusions

Mucus limits the intestinal permeation of lipophilic drugs in the rat proximal small intestine, in which Muc5ac may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DTT :

Dithiothreitol

FD-4 :

Fluorescein isothiocyanate-dextran 4000

Gapdh :

Glyceraldehyde-3-phosphate dehydrogenase

KHB :

Krebs–Henseleit bicarbonate

P app :

Apparent permeability coefficient

qPCR :

Quantitative real-time RT-PCR

UWL :

Unstirred water layer

References

  1. Camenisch G, Alsenz J, van de Waterbeemd H, Folkers G. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci. 1998;6(4):317–24.

    CAS  PubMed  Google Scholar 

  2. Goldberg M, Gomez-Orellana I. Challenges for the oral delivery of macromolecules. Nat Rev Drug Discov. 2003;2(4):289–95.

    Article  CAS  Google Scholar 

  3. Sugano K, Kansy M, Artursson P, Avdeef A, Bendels S, Di L, et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat Rev Drug Discov. 2010;9(8):597–614.

  4. Amidon GL, Sinko PJ, Fleisher D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm Res. 1988;5(10):651–4.

    Article  CAS  Google Scholar 

  5. Avdeef A, Bendels S, Di L, Faller B, Kansy M, Sugano K, et al. PAMPA—critical factors for better predictions of absorption. J Pharm Sci. 2007;96(11):2893–909.

  6. Lennernäs H. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J Pharm Pharmacol. 1997;49(7):627–38.

    Article  Google Scholar 

  7. Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun. 1991;175(3):880–5.

    Article  CAS  Google Scholar 

  8. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2001;46(1–3):27–43.

    Article  CAS  Google Scholar 

  9. Wils P, Warnery A, Phung-Ba V, Scherman D. Differentiated intestinal epithelial cell lines as in vitro models for predicting the intestinal absorption of drugs. Cell Biol Toxicol. 1994;10(5–6):393–7.

    Article  CAS  Google Scholar 

  10. Balimane PV, Chong S. Cell culture-based models for intestinal permeability: a critique. Drug Discov Today. 2005;10(5):335–43.

    Article  CAS  Google Scholar 

  11. Schneider M, Windbergs M, Daum N, Loretz B, Collnot EM, Hansen S, et al. Crossing biological barriers for advanced drug delivery. Eur J Pharm Biopharm. 2013;84(2):239–41.

  12. Boegh M, Nielsen HM. Mucus as a barrier to drug delivery - understanding and mimicking the barrier properties. Basic Clin Pharmacol Toxicol. 2015;116(3):179–86.

    Article  CAS  Google Scholar 

  13. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64(6):557–70.

    Article  CAS  Google Scholar 

  14. Corfield AP, Carroll D, Myerscough N, Probert CS. Mucins in the gastrointestinal tract in health and disease. Front Biosci. 2001;6:D1321–57.

    Article  CAS  Google Scholar 

  15. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  CAS  Google Scholar 

  16. Johansson ME, Ambort D, Pelaseyed T, Schütte A, Gustafsson JK, Ermund A, et al. Composition and functional role of the mucus layers in the intestine. Cell Mol Life Sci. 2011;68(22):3635–41.

  17. Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev. 2009;61(2):75–85.

    Article  CAS  Google Scholar 

  18. Sigurdsson HH, Kirch J, Lehr CM. Mucus as a barrier to lipophilic drugs. Int J Pharm. 2013;453(1):56–64.

    Article  CAS  Google Scholar 

  19. Kishimoto H, Miyazaki K, Takizawa Y, Shirasaka Y, Inoue K. Absorption-enhancing effect of nitric oxide on the absorption of hydrophobic drugs in rat duodenum. J Pharm Sci. 2016;105(2):729–33.

    Article  CAS  Google Scholar 

  20. Hall RL, Miller RJ, Peatfield AC, Richardson PS, Williams I, Lampert I. A colorimetric assay for mucous glycoproteins using Alcian blue. Biochem Soc Trans. 1980;8(1):72.

    Article  CAS  Google Scholar 

  21. Carlstedt I, Lindgren H, Sheehan JK, Ulmsten U, Wingerup L. Isolation and characterization of human cervical-mucus glycoproteins. Biochem J. 1983;211(1):13–22.

    Article  CAS  Google Scholar 

  22. Sheehan JK, Brazeau C, Kutay S, Pigeon H, Kirkham S, Howard M, et al. Physical characterization of the MUC5AC mucin: a highly oligomeric glycoprotein whether isolated from cell culture or in vivo from respiratory mucous secretions. Biochem J. 2000;347(1):37–44.

  23. Masaoka Y, Tanaka Y, Kataoka M, Sakuma S, Yamashita S. Site of drug absorption after oral administration: assessment of membrane permeability and luminal concentration of drugs in each segment of gastrointestinal tract. Eur J Pharm Sci. 2006;29:240–50.

    Article  CAS  Google Scholar 

  24. Sandzén B, Blom H, Dahlgren S. Gastric mucus gel layer thickness measured by direct light microscopy. An experimental study in the rat. Scand J Gastroenterol. 1988;23(10):1160–4.

    Article  Google Scholar 

  25. Bromber LE, Barr DP. Self-Association of Mucin. 2000;1:325–34.

    Google Scholar 

  26. Thornton DJ, Sheehan JK. From mucins to mucus: toward a more coherent understanding of this essential barrier. Proc Am Thorac Soc. 2004;1(1):54–61.

    Article  CAS  Google Scholar 

  27. Johansson ME, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci. 2011;108(Supplement_1):4659–65.

    Article  CAS  Google Scholar 

  28. Phillipson M, Johansson ME, Henriksnäs J, Petersson J, Gendler SJ, Sandler S, et al. The gastric mucus layers: constituents and regulation of accumulation. Am J Physiol Liver Physiol. 2008;295(4):G806–12.

  29. Hovenberg HW, Davies JR, Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 1996;318(1):319–24.

    Article  CAS  Google Scholar 

  30. Recktenwald CV, Hansson GC. The reduction-insensitive bonds of the muc2 mucin are isopeptide bonds. J Biol Chem. 2016;291(26):13580–90.

    Article  CAS  Google Scholar 

  31. Round AN, Rigby NM, Garcia de la Torre A, Macierzanka A, Mills ENC, Mackie AR. Lamellar structures of MUC2-rich mucin: a potential role in governing the barrier and lubricating functions of intestinal mucus. Biomacromolecules. 2012;13(10):3253–61.

    Article  CAS  Google Scholar 

  32. Bergstrom KSB, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP, Ryz N, Huang T, Velcich A, Finlay BB, Chadee K, Vallance BA Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. Roy CR, editor. PLoS Pathog 2010;6(5):e1000902.

  33. Gonçalves JE, Ballerini Fernandes M, Chiann C, Gai MN, De Souza J, Storpirtis S. Effect of pH, mucin and bovine serum on rifampicin permeability through Caco-2 cells. Biopharm Drug Dispos. 2012;33(6):316–23.

    Article  Google Scholar 

  34. Larhed AW, Artursson P, Björk E. The influence of intestinal mucus components on the diffusion of drugs. Pharm Res. 1998;15(1):66–71.

    Article  CAS  Google Scholar 

  35. Larhed AW, Artursson P, Gråsjö J, Björk E. Diffusion of drugs in native and purified gastrointestinal mucus. J Pharm Sci. 1997;86(6):660–5.

    Article  CAS  Google Scholar 

  36. Gargano AFG, Lämmerhofer M, Lönn H, Schoenmakers PJ, Leek T. Mucin-based stationary phases as tool for the characterization of drug–mucus interaction. J Chromatogr A. 2014;1351:70–81.

    Article  CAS  Google Scholar 

  37. Holmén Larsson JM, Thomsson KA, Rodríguez-Piñeiro AM, Karlsson H, Hansson GC. Studies of mucus in mouse stomach, small intestine, and colon. III. Gastrointestinal Muc5ac and Muc2 mucin O -glycan patterns reveal a regiospecific distribution. Am J Physiol Liver Physiol. 2013;305(5):G357–63.

    Google Scholar 

  38. Ho NF, Higuchi WI. Theoretical model studies of intestinal drug absorption. IV. Bile acid transport at premicellar concentrations across diffusion layer-membrane barrier. J Pharm Sci. 1974;63(5):686–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by a research grant from The Nakatomi Foundation and JSPS KAKENHI (Grant Number 17 K15522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuhisa Inoue.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyazaki, K., Kishimoto, H., Muratani, M. et al. Mucins are Involved in the Intestinal Permeation of Lipophilic Drugs in the Proximal Region of Rat Small Intestine. Pharm Res 36, 162 (2019). https://doi.org/10.1007/s11095-019-2701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2701-9

Key Words

Navigation