Skip to main content

Advertisement

Log in

Polyelectrolyte Carboxymethyl Cellulose for Enhanced Delivery of Doxorubicin in MCF7 Breast Cancer Cells: Toxicological Evaluations in Mice Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Chemotherapy as an important tool for cancer treatment faces many obstacles such as multidrug resistance and adverse toxic effects on healthy tissues. Drug delivery systems have opened a new window to overcome these problems.

Methods

A polyelectrolyte carboxymethyl cellulose polymer as a magnetic nanocarrier was synthesized for enhancing delivery and uptake of doxorubicin in MCF7 breast cancer cells and decreasing the adverse toxic effects to healthy tissues.

Results

The physicochemical properties of developed nanocarrier showed that it can be used in drug delivery purposes. The efficiency of the delivery system was assessed by loading and release studies. Besides, biological assays including protein-particle interaction, hemolysis assay, cytotoxicity study, cellular uptake, and apoptosis analysis were performed. All results persuaded us to investigate the cytotoxic effects of nanocarrier in an animal model by determining the biochemical parameters attributed to organ injuries, and hematoxylin and eosin (H&E) staining for histopathological manifestations. We observed that the nanocarrier has no toxic effect on healthy tissues, while, it is capable of reducing the toxic side effects of doxorubicin by more cellular internalization.

Conclusion

Chemical characterizations and biological studies confirmed that developed nanocarrier with permanent cationic groups of imidazolium and anionic carboxylic acid groups is an effective candidate for anticancer drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

CK:

Creatine kinase

CMC:

Carboxymethyl cellulose

Cr:

Creatinine

DAPI:

4′,6-diamidino-2-phenylindole

DDS:

Drug delivery systems

DEE:

Drug encapsulation efficiency

DLE:

Drug loading efficiency

DLS:

Dynamic light scattering

DOX:

Doxorubicin

DSC:

Differential scanning calorimetry

EDTA:

Ethylenediaminetetraacetic acid

EDX:

Energy-dispersive X-ray spectroscopy

EPR:

Enhanced permeability and retention

FBS:

Fetal bovine serum

FTIR:

Fourier transform infrared PLGA

LDH:

Lactate dehydrogenase

MDR:

Multidrug resistance

MFI:

Mean fluorescent intensity

MNPs:

Magnetic nanoparticles

MTT:

3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphe-nyltetrazolium bromide

P-gp:

P-glycoprotein

RPMI-1640:

Roswell Park Memorial Institute 1640 growth medium

SEM:

Scanning electron microscopy

TEM:

Transmission Electron Microscopy

VSM:

Vibrating-sample magnetometer

Ur:

Urea

XRD:

X-ray diffraction

References

  1. Gottesman MM, Lavi O, Hall MD, Gillet JP. Toward a better understanding of the complexity of Cancer drug resistance. Annu Rev Pharmacol Toxicol. 2016;56:85–102.

    Article  CAS  PubMed  Google Scholar 

  2. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Zarghami N. New insights into antidiabetic drugs: possible applications in Cancer treatment. Chem Biol Drug Des. 2017;90:1056–66.

    Article  CAS  PubMed  Google Scholar 

  3. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26.

    Article  CAS  PubMed  Google Scholar 

  4. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Fang J, Kim Y-J, Wong MK, Wang P. Codelivery of doxorubicin and paclitaxel by cross-linked multilamellar liposome enables synergistic antitumor activity. Mol Pharm. 2014;11(5):1651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–31.

    Article  CAS  PubMed  Google Scholar 

  7. Rahimi M, Shojaei S, Safa KD, Ghasemi Z, Salehi R, Yousefi B, et al. Biocompatible magnetic tris (2-aminoethyl) amine functionalized nanocrystalline cellulose as a novel nanocarrier for anticancer drug delivery of methotrexate. New J Chem. 2017;41(5):2160–8.

    Article  CAS  Google Scholar 

  8. Zhang P, Li J, Ghazwani M, Zhao W, Huang Y, Zhang X, et al. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials. 2015;67:104–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rahimi M, Safa KD, Salehi R. Co-delivery of doxorubicin and methotrexate by dendritic chitosan-g-mPEG as a magnetic nanocarrier for multi-drug delivery in combination chemotherapy. Polym Chem. 2017;8(47):7333–50.

    Article  CAS  Google Scholar 

  10. Hennink W, Park K. The influence of polymer topology on pharmacokinetics. Elsevier; 2009.

  11. Rahimi M, Shafiei-Irannejad V, Safa KD, Salehi R. Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties. Carbohydr Polym. 2018;196:299–312.

    Article  CAS  PubMed  Google Scholar 

  12. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40(7):3941–94.

    Article  CAS  PubMed  Google Scholar 

  13. Aouada FA, de Moura MR, Orts WJ, Mattoso LH. Preparation and characterization of novel micro- and nanocomposite hydrogels containing cellulosic fibrils. J Agric Food Chem. 2011;59(17):9433–42.

    Article  CAS  PubMed  Google Scholar 

  14. Elumalai R, Patil S, Maliyakkal N, Rangarajan A, Kondaiah P, Raichur AM. Protamine-carboxymethyl cellulose magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers. Nanomed: Nanotechnol, Biol Med. 2015;11(4):969–81.

    Article  CAS  Google Scholar 

  15. Dai L, Yang T, He J, Deng L, Liu J, Wang L, et al. Cellulose-graft-poly (l-lactic acid) nanoparticles for efficient delivery of anti-cancer drugs. J Mater Chem B. 2014;2(39):6749–57.

    Article  CAS  Google Scholar 

  16. Lin J, Alexander-Katz A. Cell membranes open “doors” for cationic nanoparticles/biomolecules: insights into uptake kinetics. ACS Nano. 2013;7(12):10799–808.

    Article  CAS  PubMed  Google Scholar 

  17. Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421–9.

    Article  CAS  PubMed  Google Scholar 

  18. Wei L, Chen C, Hou Z, Wei H. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries. Sci Rep. 2016;6:19583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23(7):1553–61.

    Article  CAS  PubMed  Google Scholar 

  20. Rahimi M, Safa KD, Alizadeh E, Salehi R. Dendritic chitosan as a magnetic and biocompatible nanocarrier for the simultaneous delivery of doxorubicin and methotrexate to MCF-7 cell line. New J Chem. 2017;41(8):3177–89.

    Article  CAS  Google Scholar 

  21. Azimi A, Majidinia M, Shafiei-Irannejad V, Jahanban-Esfahlan R, Ahmadi Y, Karimian A, et al. Suppression of p53R2 gene expression with specific siRNA sensitizes HepG2 cells to doxorubicin. Gene. 2018;642:249–55.

    Article  CAS  PubMed  Google Scholar 

  22. Shafiei-Irannejad V, Samadi N, Yousefi B, Salehi R, Velaei K, Zarghami N. Metformin enhances doxorubicin sensitivity via inhibition of doxorubicin efflux in P-gp-overexpressing MCF-7 cells. Chem Biol Drug Des. 2018;91(1):269–76.

    Article  CAS  PubMed  Google Scholar 

  23. Yousefi B, Samadi N, Baradaran B, Rameshknia V, Shafiei-Irannejad V, Majidinia M, et al. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Cell Mol Biol (Noisy-le-Grand). 2015;61(8):118–22.

    CAS  Google Scholar 

  24. Shafiei-Irannejad V, Samadi N, Salehi R, Yousefi B, Rahimi M, Akbarzadeh A, et al. Reversion of multidrug resistance by co-encapsulation of doxorubicin and metformin in poly (lactide-co-glycolide)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Pharm Res. 2018;35(6):119.

    Article  PubMed  Google Scholar 

  25. Shojaei S, Ghasemi Z, Shahrisa A. Cu (I)@ Fe3O4 nanoparticles supported on imidazolium-based ionic liquid-grafted cellulose: green and efficient nanocatalyst for multicomponent synthesis of N-sulfonylamidines and N-sulfonylacrylamidines. Appl Organomet Chem. 2017;31(11):e3788.

    Article  Google Scholar 

  26. Mir M, Yazdani Y, Asadi J, Khoshbin Khoshnazar AA. Survey on the possibility of utilizing gamma H2AX as a biodosimeter in radiation workers. Iran J Med Phys. 2015;12(1):14–21.

    Google Scholar 

  27. Yarmohamadi A, Asadi J, Gharaei R, Mir M, Khoshnazar AK. Valproic acid, a histone deacetylase inhibitor, enhances radiosensitivity in breast cancer cell line. J Radiat Cancer Res. 2018;9(2):86.

    Article  Google Scholar 

  28. Yang F, Li G, He Y-G, Ren F-X, Wang G-x. Synthesis, characterization, and applied properties of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym. 2009;78(1):95–9.

    Article  CAS  Google Scholar 

  29. Lim J, Yeap SP, Che HX, Low SC. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett. 2013;8(1):381.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Anbarasu M, Anandan M, Chinnasamy E, Gopinath V, Balamurugan K. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications. Spectrochim Acta A Mol Biomol Spectrosc. 2015;135:536–9.

    Article  CAS  PubMed  Google Scholar 

  31. Huang H, Lai W, Cui M, Liang L, Lin Y, Fang Q, et al. An evaluation of blood compatibility of silver nanoparticles. Sci Rep. 2016;6:25518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008;8(8):2180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tso C-p, Zhung C-m, Shih Y-h, Tseng Y-M, Wu S-c, Doong R-a. Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol. 2010;61(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  34. Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine. 2016;11(1):81–100.

    Article  CAS  PubMed  Google Scholar 

  35. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

We thank the Drug Applied Research Centre (DARC), Aging Research Institute, Physical Medicine and Rehabilitation Research Centre, Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran and Cellular and Molecular Research Centre, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran. The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Yousefi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei-Irannejad, V., Rahimi, M., Zarei, M. et al. Polyelectrolyte Carboxymethyl Cellulose for Enhanced Delivery of Doxorubicin in MCF7 Breast Cancer Cells: Toxicological Evaluations in Mice Model. Pharm Res 36, 68 (2019). https://doi.org/10.1007/s11095-019-2598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2598-3

KEY WORDS

Navigation