Skip to main content
Log in

Recovery of OATP1B Activity after Living Kidney Transplantation in Patients with End-Stage Renal Disease

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Recently, several studies have shown that renal failure decreases the metabolic clearance of drugs and the transportation capability of some drug transporters. However, whether organic anion transporting polypeptide (OATP)1B activities decrease in renal failure remains unknown. In this study, we measured plasma concentrations of coproporphyrin-I (CP-I), a specific endogenous OATP1B probe, in patients with end stage renal disease before and after living kidney transplantation and evaluated the effect of renal function on OATP1B activity.

Methods

This prospective study recruited 13 patients with end-stage renal disease. Plasma CP-I concentrations were measured before and 7, 14, 30 and 90 days after living kidney transplantation.

Results

Plasma CP-I concentrations decreased over time after living kidney transplantation and showed significant difference on day 90 compared with before living kidney transplantation [1.12 ± 0.59 vs 0.65 ± 0.27 ng/mL, p < 0.05 (95% CI of difference − 0.927, −0.013)]. A significant negative correlation was observed between estimated glomerular filtration rate and plasma CP-I concentration (r = −0.30, p < 0.05), suggesting recovery of OATP1B activity with improvement in renal function.

Conclusions

OATP1B activity may decrease in renal failure and dose adjustment of OATP1B substrates may be needed in patients with renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABCG2:

ATP-binding cassette sub-family G member 2

ALT:

alanine aminotransaminase

CKD-EPI:

Chronic Kidney Disease Epidemiology Collaboration

CMPF:

3-carboxy-4-methyl-5-propyl-2-furan-propanoic acid

CP:

coproporphyrin

eGFR:

estimated glomerular filtration rate

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

HMG:

hydroxymethylglutaryl

HSA:

human serum albumin

LLOQ:

lower limit of quantification

MRM:

multiple reaction monitoring

MRP:

multidrug resistance-associated protein

OATP:

organic anion transporting polypeptides

PASW:

Predictive Analysis Software

QC:

quality control

SPE:

solid phase extraction

UPLC-MS/MS:

ultra-performance liquid chromatography with tandem mass spectrometry

References

  1. Nishizato Y, Ieiri I, Suzuki H, Kimura M, Kawabata K, Hirota T, et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 2003;73(6):554–65.

    Article  CAS  PubMed  Google Scholar 

  2. Chung JY, Cho JY, Yu KS, Kim JR, Oh DS, Jung HR, et al. Effect of OATP1B1 (SLCO1B1) variant alleles on the pharmacokinetics of pitavastatin in healthy volunteers. Clin Pharmacol Ther. 2005;78(4):342–50.

    Article  CAS  PubMed  Google Scholar 

  3. Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther. 2005;78(4):330–41.

    Article  CAS  PubMed  Google Scholar 

  4. Pasanen MK, Neuvonen M, Neuvonen PJ, Niemi M. SLCO1B1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet Genomics. 2006;16(12):873–9.

    Article  CAS  PubMed  Google Scholar 

  5. Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2007;82(6):726–33.

    Article  CAS  PubMed  Google Scholar 

  6. Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK, et al. Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther. 2005;77(6):468–78.

    Article  CAS  PubMed  Google Scholar 

  7. Niemi M, Kivisto KT, Hofmann U, Schwab M, Eichelbaum M, Fromm MF. Fexofenadine pharmacokinetics are associated with a polymorphism of the SLCO1B1 gene (encoding OATP1B1). Br J Clin Pharmacol. 2005;59(5):602–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Furihata T, Matsumoto S, Fu Z, Tsubota A, Sun Y, Matsumoto S, et al. Different interaction profiles of direct-acting anti-hepatitis C virus agents with human organic anion transporting polypeptides. Antimicrob Agents Chemother. 2014;58(8):4555–64.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Maeda K, Ikeda Y, Fujita T, Yoshida K, Azuma Y, Haruyama Y, et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther. 2011;90(4):575–81.

    Article  CAS  PubMed  Google Scholar 

  10. Lemahieu WP, Hermann M, Asberg A, Verbeke K, Holdaas H, Vanrenterghem Y, et al. Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. Am J Transplant. 2005;5(9):2236–43.

    Article  CAS  PubMed  Google Scholar 

  11. Takehara I, Yoshikado T, Ishigame K, Mori D, Furihata KI, Watanabe N, et al. Comparative study of the dose-dependence of OATP1B inhibition by rifampicin using probe drugs and endogenous substrates in healthy volunteers. Pharm Res. 2018;35(7):138.

    Article  PubMed  Google Scholar 

  12. Takehara I, Terashima H, Nakayama T, Yoshikado T, Yoshida M, Furihata K, et al. Investigation of Glycochenodeoxycholate sulfate and Chenodeoxycholate glucuronide as surrogate endogenous probes for drug interaction studies of OATP1B1 and OATP1B3 in healthy Japanese volunteers. Pharm Res. 2017;34(8):1601–14.

    Article  CAS  PubMed  Google Scholar 

  13. Bednarczyk D, Boiselle C. Organic anion transporting polypeptide (OATP)-mediated transport of coproporphyrins I and III. Xenobiotica. 2016;46(5):457–66.

    Article  CAS  PubMed  Google Scholar 

  14. Shen H, Dai J, Liu T, Cheng Y, Chen W, Freeden C, et al. Coproporphyrins I and III as functional markers of OATP1B activity: in vitro and in vivo evaluation in preclinical species. J Pharmacol Exp Ther. 2016;357(2):382–93.

    Article  CAS  PubMed  Google Scholar 

  15. Lai Y, Mandlekar S, Shen H, Holenarsipur VK, Langish R, Rajanna P, et al. Coproporphyrins in plasma and urine can be appropriate clinical biomarkers to recapitulate drug-drug interactions mediated by organic anion transporting polypeptide inhibition. J Pharmacol Exp Ther. 2016;358(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  16. Shen H, Chen W, Drexler DM, Mandlekar S, Holenarsipur VK, Shields EE, et al. Comparative evaluation of plasma bile acids, Dehydroepiandrosterone sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as markers of OATP inhibition in healthy subjects. Drug Metab Dispos. 2017;45(8):908–19.

    Article  CAS  PubMed  Google Scholar 

  17. Barnett S, Ogungbenro K, Menochet K, Shen H, Lai Y, Humphreys WG, et al. Gaining mechanistic insight into Coproporphyrin I as endogenous biomarker for OATP1B-mediated drug-drug interactions using population pharmacokinetic modeling and simulation. Clin Pharmacol Ther. 2018;104(3):564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kunze A, Ediage EN, Dillen L, Monshouwer M, Snoeys J. Clinical investigation of Coproporphyrins as sensitive biomarkers to predict mild to strong OATP1B-mediated drug-drug interactions. Clin Pharmacokinet. 2018;57(12):1559–70.

    Article  CAS  PubMed  Google Scholar 

  19. Shen H, Christopher L, Lai Y, Gong J, Kandoussi H, Garonzik S, et al. Further studies to support the use of Coproporphyrin I and III as novel clinical biomarkers for evaluating the potential for organic anion transporting polypeptide 1B1 and OATP1B3 inhibition. Drug Metab Dispos. 2018;46(8):1075–82.

    Article  CAS  PubMed  Google Scholar 

  20. Liu L, Cheeti S, Yoshida K, Choo E, Chen E, Chen B, et al. Effect of OATP1B1/1B3 inhibitor GDC-0810 on the pharmacokinetics of pravastatin and Coproporphyrin I/III in healthy female subjects. J Clin Pharmacol. 2018;58(11):1427–35.

    Article  CAS  PubMed  Google Scholar 

  21. Uchida N, Kurata N, Shimada K, Nishimura Y, Yasuda K, Hashimoto M, et al. Changes of hepatic microsomal oxidative drug metabolizing enzymes in chronic renal failure (CRF) rats by partial nephrectomy. Jpn J Pharmacol. 1995;68(4):431–9.

    Article  CAS  PubMed  Google Scholar 

  22. Leblond FA, Giroux L, Villeneuve JP, Pichette V. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos. 2000;28(11):1317–20.

    CAS  PubMed  Google Scholar 

  23. Leblond F, Guevin C, Demers C, Pellerin I, Gascon-Barre M, Pichette V. Downregulation of hepatic cytochrome P450 in chronic renal failure. J Am Soc Nephrol. 2001;12(2):326–32.

    CAS  PubMed  Google Scholar 

  24. Rege B, Krieg R, Gao N, Sarkar MA. Down-regulation of hepatic CYP3A in chronic renal insufficiency. Pharm Res. 2003;20(10):1600–6.

    Article  CAS  PubMed  Google Scholar 

  25. Naud J, Michaud J, Beauchemin S, Hebert MJ, Roger M, Lefrancois S, et al. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos. 2011;39(8):1363–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kusaba J, Kajikawa N, Kawasaki H, Kurosaki Y, Aiba T. Comparative study on altered hepatic metabolism of CYP3A substrates in rats with glycerol-induced acute renal failure. Biopharm Drug Dispos. 2012;33(1):22–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nolin TD, Frye RF, Le P, Sadr H, Naud J, Leblond FA, et al. ESRD impairs nonrenal clearance of fexofenadine but not midazolam. J Am Soc Nephrol. 2009;20(10):2269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thomson BK, Nolin TD, Velenosi TJ, Feere DA, Knauer MJ, Asher LJ, et al. Effect of CKD and dialysis modality on exposure to drugs cleared by nonrenal mechanisms. Am J Kidney Dis. 2015;65(4):574–82.

    Article  CAS  PubMed  Google Scholar 

  29. Guevin C, Michaud J, Naud J, Leblond FA, Pichette V. Down-regulation of hepatic cytochrome p450 in chronic renal failure: role of uremic mediators. Br J Clin Pharmacol. 2002;137(7):1039–46.

    Article  CAS  Google Scholar 

  30. Sun H, Huang Y, Frassetto L, Benet LZ. Effects of uremic toxins on hepatic uptake and metabolism of erythromycin. Drug Metab Dispos. 2004;32(11):1239–46.

    Article  CAS  PubMed  Google Scholar 

  31. Hanada K, Ogawa R, Son K, Sasaki Y, Kikkawa A, Ichihara S, et al. Effects of indoxylsulfate on the in vitro hepatic metabolism of various compounds using human liver microsomes and hepatocytes. Nephron Physiol. 2006;103(4):p179–86.

    Article  CAS  PubMed  Google Scholar 

  32. Michaud J, Nolin TD, Naud J, Dani M, Lafrance JP, Leblond FA, et al. Effect of hemodialysis on hepatic cytochrome P450 functional expression. J Pharmacol Sci. 2008;108(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  33. Sugimoto R, Watanabe H, Ikegami K, Enoki Y, Imafuku T, Sakaguchi Y, et al. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism. Kidney Int. 2017;91(3):658–70.

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe H, Sugimoto R, Ikegami K, Enoki Y, Imafuku T, Fujimura R, et al. Parathyroid hormone contributes to the down-regulation of cytochrome P450 3A through the cAMP/PI3K/PKC/PKA/NF-kappaB signaling pathway in secondary hyperparathyroidism. Biochem Pharmacol. 2017;145:192–201.

    Article  CAS  PubMed  Google Scholar 

  35. Naud J, Michaud J, Leblond FA, Lefrancois S, Bonnardeaux A, Pichette V. Effects of chronic renal failure on liver drug transporters. Drug Metab Dispos. 2008;36(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  36. Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S. Modification of the CKD epidemiology collaboration (CKD-EPI) equation for Japanese: accuracy and use for population estimates. Am J Kidney Dis. 2010;56(1):32–8.

    Article  PubMed  Google Scholar 

  37. Njumbe Ediage E, Dillen L, Vroman A, Diels L, Kunze A, Snoeys J, et al. Development of an LC-MS method to quantify coproporphyrin I and III as endogenous biomarkers for drug transporter-mediated drug-drug interactions. J Chromatogr B Analyt Technol Biomed Life Sci. 2018;1073:80–9.

    Article  CAS  PubMed  Google Scholar 

  38. US Department of Health and Human Services, Food and Drug Administration, Guidance for industry, bioanalytical method validation. 2001. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf (Accessed 15 Jan 2018).

  39. European Medicines Agency, Guideline on Bioanalytical Method Validation. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (Accessed 15 Jan, 2018).

  40. Witt L, Suzuki Y, Hohmann N, Mikus G, Haefeli WE, Burhenne J. Ultrasensitive quantification of the CYP2E1 probe chlorzoxazone and its main metabolite 6-hydroxychlorzoxazone in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry after chlorzoxazone microdosing. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1027:207–13.

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki Y, Witt L, Mier W, Mikus G, Markert C, Haefeli WE, et al. Ultra-sensitive and selective quantification of endothelin-1 in human plasma using ultra-performance liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal. 2017;142:84–90.

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki Y, Tanaka R, Oyama N, Nonoshita K, Hashinaga K, Umeki K, et al. Sensitive and selective quantification of total and free itraconazole and hydroxyitraconazole in human plasma using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Clin Biochem. 2017;50(18):1228–36.

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki Y, Itoh H, Sato F, Kawasaki K, Sato Y, Fujioka T, et al. Significant increase in plasma 4beta-hydroxycholesterol concentration in patients after kidney transplantation. J Lipid Res. 2013;54(9):2568–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki Y, Itoh H, Fujioka T, Sato F, Kawasaki K, Sato Y, et al. Association of plasma concentration of 4beta-hydroxycholesterol with CYP3A5 polymorphism and plasma concentration of indoxyl sulfate in stable kidney transplant recipients. Drug Metab Dispos. 2014;42(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki Y, Fujioka T, Sato F, Matsumoto K, Muraya N, Tanaka R, et al. CYP3A5 polymorphism affects the increase in CYP3A activity after living kidney transplantation in patients with end stage renal disease. Br J Clin Pharmacol. 2015;80(6):1421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsushima S, Maeda K, Ishiguro N, Igarashi T, Sugiyama Y. Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans. Drug Metab Dispos. 2008;36(4):663–9.

    Article  CAS  PubMed  Google Scholar 

  47. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.

    Article  CAS  PubMed  Google Scholar 

  48. Launay-Vacher V, Izzedine H, Deray G. Statins' dosage in patients with renal failure and cyclosporine drug-drug interactions in transplant recipient patients. Int J Cardiol. 2005;101(1):9–17.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements and Disclosures

The authors thank Kazue Ogata of Department of Clinical Pharmacy, Oita University Hospital, for technical assistance. We have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosuke Suzuki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, Y., Ono, H., Tanaka, R. et al. Recovery of OATP1B Activity after Living Kidney Transplantation in Patients with End-Stage Renal Disease. Pharm Res 36, 59 (2019). https://doi.org/10.1007/s11095-019-2593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2593-8

Key Words

Navigation