Skip to main content

Advertisement

Log in

An Expandable Mechanopharmaceutical Device (3): a Versatile Raman Spectral Cytometry Approach to Study the Drug Cargo Capacity of Individual Macrophages

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To improve cytometric phenotyping abilities and better understand cell populations with high interindividual variability, a novel Raman-based microanalysis was developed to characterize macrophages on the basis of chemical composition, specifically to measure and characterize intracellular drug distribution and phase separation in relation to endogenous cellular biomolecules.

Methods

The microanalysis was developed for the commercially-available WiTec alpha300R confocal Raman microscope. Alveolar macrophages were isolated and incubated in the presence of pharmaceutical compounds nilotinib, chloroquine, or etravirine. A Raman data processing algorithm was specifically developed to acquire the Raman signals emitted from single-cells and calculate the signal contributions from each of the major molecular components present in cell samples.

Results

Our methodology enabled analysis of the most abundant biochemicals present in typical eukaryotic cells and clearly identified “foamy” lipid-laden macrophages throughout cell populations, indicating feasibility for cellular lipid content analysis in the context of different diseases. Single-cell imaging revealed differences in intracellular distribution behavior for each drug; nilotinib underwent phase separation and self-aggregation while chloroquine and etravirine accumulated primarily via lipid partitioning.

Conclusions

This methodology establishes a versatile cytometric analysis of drug cargo loading in macrophages requiring small numbers of cells with foreseeable applications in toxicology, disease pathology, and drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fels AO, Cohn ZA. The alveolar macrophage. J Appl Physiol. 1986;60(2):353–69.

    Article  CAS  PubMed  Google Scholar 

  2. Hocking WG, Golde DW. The pulmonary-alveolar macrophage. N Engl J Med. 1979;301(11):580–7.

    Article  CAS  PubMed  Google Scholar 

  3. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol. 2014;14(2):81–93.

    Article  CAS  PubMed  Google Scholar 

  4. Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T, et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nat Chem. 2014;6(7):614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antonini JM, Reasor MJ. Accumulation of amiodarone and desethylamiodarone by rat alveolar macrophages in cell culture. Biochem Pharmacol. 1991;42:S151–S6.

    Article  CAS  PubMed  Google Scholar 

  6. Logan R, Kong AC, Krise JP. Time-dependent effects of hydrophobic amine-containing drugs on lysosome structure and biogenesis in cultured human fibroblasts. J Pharm Sci. 2014;103(10):3287–96.

    Article  CAS  PubMed  Google Scholar 

  7. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96(4):729–46.

    Article  CAS  PubMed  Google Scholar 

  8. Anderson N, Borlak J. Drug-induced phospholipidosis. FEBS Lett. 2006;580(23):5533–40.

    Article  CAS  PubMed  Google Scholar 

  9. Halliwell WH. Cationic amphiphilic drug-induced Phospholipidosis. Toxicol Pathol. 1997;25(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  10. Zheng N, Zhang X, Rosania GR. Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine. J Pharmacol Exp Ther. 2011;336(3):661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin WJ, Standing JE. Amiodarone pulmonary toxicity: biochemical evidence for a cellular phospholipidosis in the bronchoalveolar lavage of human subjects. J Pharmacol Exp Ther. 1988;244(2):774–9.

    CAS  PubMed  Google Scholar 

  12. Rzeczycki P, Yoon GS, Keswani RK, Sud S, Stringer KA, Rosania GR. Detecting ordered small molecule drug aggregates in live macrophages: a multi-parameter microscope image data acquisition and analysis strategy. Biomed Opt Express. 2017;8(2):860–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sadrieh N. The regulatory challenges of drug-induced Phospholipidosis - Presented in part at the FDA Advisory Committee for Pharmaceutical Science and Clinical Pharmacology meeting. 2010.

  14. Garg J, Agrawal N, Marballi A, Agrawal S, Rawat N, Sule S, et al. Amiodarone induced pulmonary toxicity: an unusual response to steroids. Am J Case Rep. 2012;13:62–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoneda KY, Hardin KA, Gandara DR, Shelton DK. Interstitial lung disease associated with epidermal growth factor receptor tyrosine kinase inhibitor therapy in non–small-cell lung carcinoma. Clin Lung Cancer. 2006;8:S31–S5.

    Article  CAS  PubMed  Google Scholar 

  16. Chatman LA, Morton D, Johnson TO, Anway SD. A strategy for risk management of drug-induced phospholipidosis. Toxicol Pathol. 2009;37(7):997–1005.

    Article  CAS  PubMed  Google Scholar 

  17. Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf. 2006;5(4):567–83.

    Article  CAS  PubMed  Google Scholar 

  18. Reasor MJ, Kacew S. Drug-induced phospholipidosis: are there functional consequences? Exp Biol Med. 2001;226(9):825–30.

    Article  CAS  Google Scholar 

  19. Bocklitz TW, Guo S, Ryabchykov O, Vogler N, Popp J. Raman based molecular imaging and analytics: a magic bullet for biomedical applications!? Anal Chem. 2016;88(1):133–51.

    Article  CAS  PubMed  Google Scholar 

  20. Fu D, Lu F-K, Zhang X, Freudiger C, Pernik DR, Holtom G, et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J Am Chem Soc. 2012;134(8):3623–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hosokawa M, Ando M, Mukai S, Osada K, Yoshino T, Hamaguchi H-o, et al. In vivo live cell imaging for the quantitative monitoring of lipids by using Raman microspectroscopy. Anal Chem. 2014;86(16):8224–30.

    Article  CAS  PubMed  Google Scholar 

  22. Ho S-H, Shimada R, Ren N-Q, Ozawa T. Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift. Biotechnol Biofuels. 2017;10(1):9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lu F-K, Basu S, Igras V, Hoang MP, Ji M, Fu D, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci. 2015;112(37):11624–9.

    Article  CAS  PubMed  Google Scholar 

  24. Konorov SO, Schulze HG, Atkins CG, Piret JM, Aparicio SA, Turner RF, et al. Absolute quantification of intracellular glycogen content in human embryonic stem cells with Raman microspectroscopy. Anal Chem. 2011;83(16):6254–8.

    Article  CAS  PubMed  Google Scholar 

  25. Stiebing C, Matthäus C, Krafft C, Keller A-A, Weber K, Lorkowski S, et al. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy. Anal Bioanal Chem. 2014;406(27):7037–46.

    Article  CAS  PubMed  Google Scholar 

  26. Galler K, Requardt RP, Glaser U, Markwart R, Bocklitz T, Bauer M, et al. Single cell analysis in native tissue: quantification of the retinoid content of hepatic stellate cells. Sci Rep. 2016;6.

  27. El-Mashtoly SF, Petersen D, Yosef HK, Mosig A, Reinacher-Schick A, Kötting C, et al. Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst. 2014;139(5):1155–61.

    Article  CAS  PubMed  Google Scholar 

  28. Meister K, Niesel J, Schatzschneider U, Metzler-Nolte N, Schmidt DA, Havenith M. Label-free imaging of metal–carbonyl complexes in live cells by Raman microspectroscopy. Angew Chem Int Ed. 2010;49(19):3310–2.

  29. Gonçalves R, Mosser DM. The isolation and characterization of murine macrophages. Curr Protoc Immunol. 2015;111(1):14.1.1–6.

    Article  Google Scholar 

  30. Ong YH, Lim M, Liu Q. Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Opt Express. 2012;20(20):22158–71.

    Article  CAS  PubMed  Google Scholar 

  31. Bergholt MS, Zheng W, Lin K, Ho KY, Teh M, Yeoh KG, et al. Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. BIOMEDO. 2011;16(3):037003–10.

    Google Scholar 

  32. Kuzmin AN, Pliss A, Prasad PN. Changes in biomolecular profile in a single nucleolus during cell fixation. Anal Chem. 2014;86(21):10909–16.

    Article  CAS  PubMed  Google Scholar 

  33. O'Malley J, Kumar R, Kuzmin AN, Pliss A, Yadav N, Balachandar S, et al. Lipid quantification by Raman microspectroscopy as a potential biomarker in prostate cancer. Cancer Lett. 2017;397:52–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuzmin AN, Pliss A, Kachynski AV. Biomolecular component analysis of cultured cell nucleoli by Raman microspectrometry. J Raman Spectrosc. 2013;44(2):198–204.

    Article  CAS  Google Scholar 

  35. Kuzmin AN, Levchenko SM, Pliss A, Qu J, Prasad PN. Molecular profiling of single organelles for quantitative analysis of cellular heterogeneity. Sci Rep. 2017;7(1):6512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kuzmin A, Pliss A, Prasad P. Ramanomics: new omics disciplines using micro Raman spectrometry with biomolecular component analysis for molecular profiling of biological structures. Biosensors. 2017;7(4):52.

    Article  PubMed Central  CAS  Google Scholar 

  37. Hamada K, Fujita K, Smith NI, Kobayashi M, Inouye Y, Kawata S, editors. Raman microscopy for dynamic molecular imaging of living cells. 2008: SPIE.

  38. Okada M, Smith NI, Palonpon AF, Endo H, Kawata S, Sodeoka M, et al. Label-free Raman observation of cytochrome c dynamics during apoptosis. Proc Natl Acad Sci. 2012;109(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  39. Morita S-i, Takanezawa S, Hiroshima M, Mitsui T, Ozaki Y, Sako Y. Raman and autofluorescence spectrum dynamics along the HRG-induced differentiation pathway of MCF-7 cells. Biophys J. 2014;107(10):2221–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Romero F, Shah D, Duong M, Penn RB, Fessler MB, Madenspacher J, et al. A Pneumocyte–macrophage paracrine lipid Axis drives the lung toward fibrosis. Am J Respir Cell Mol Biol. 2015;53(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farrera C, Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56.

  42. Ichimura T, Chiu L-d, Fujita K, Machiyama H, Kawata S, Watanabe TM, et al. Visualizing the appearance and disappearance of the attractor of differentiation using Raman spectral imaging. Sci Rep. 2015;5:11358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goerke J. Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta (BBA) - Mol Basis Dis. 1998;1408(2):79–89.

    Article  CAS  Google Scholar 

  44. Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541.

    Article  CAS  Google Scholar 

  45. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Molecular cell biology 4th edition. National Center for Biotechnology InformationÕs Bookshelf. 2000.

  46. Ter Heine R, Mulder JW, Van Gorp ECM, Wagenaar JFP, Beijnen JH, Huitema ADR. Intracellular and plasma steady-state pharmacokinetics of raltegravir, darunavir, etravirine and ritonavir in heavily pre-treated HIV-infected patients. Br J Clin Pharmacol. 2010;69(5):475–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Schie IW, Kiselev R, Krafft C, Popp J. Rapid acquisition of mean Raman spectra of eukaryotic cells for a robust single cell classification. Analyst. 2016;141(23):6387–95.

    Article  CAS  PubMed  Google Scholar 

  48. Baik J, Stringer KA, Mane G, Rosania GR. Multiscale distribution and bioaccumulation analysis of clofazimine reveals a massive immune system-mediated xenobiotic sequestration response. Antimicrob Agents Chemother. 2013;57(3):1218–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. van Manen H-J, Kraan YM, Roos D, Otto C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci U S A. 2005;102(29):10159–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Raghavendran K, Nemzek J, Napolitano LM, Knight PR. Aspiration-induced lung injury. Crit Care Med. 2011;39(4):818–26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gus R. Rosania.

Electronic Supplementary Material

ESM 1

(DOCX 56932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaLone, V., Mourão, M.A., Standiford, T.J. et al. An Expandable Mechanopharmaceutical Device (3): a Versatile Raman Spectral Cytometry Approach to Study the Drug Cargo Capacity of Individual Macrophages. Pharm Res 36, 2 (2019). https://doi.org/10.1007/s11095-018-2540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2540-0

Key words

Navigation