Skip to main content

Advertisement

Log in

Bioequivalence Study Methods with Pharmacokinetic Endpoints for Topical Ophthalmic Corticosteroid Suspensions and Effects of Subject Demographics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To establish bioequivalence for topical ophthalmic corticosteroid suspensions, some of U.S. product-specific guidances (PSGs) for generic drug products recommend evaluation of aqueous humor (AH) pharmacokinetics (PK). However, the AH PK study is complex because the relationships among AH PK, subject demographics, ocular anatomy, physiology and the compounds’ physicochemical characteristics are not well understood. The objective of this research is to provide an overview of the in vivo human AH studies submitted to the U.S. Food and Drug Administration (FDA) for ophthalmic corticosteroid suspensions and to investigate the impact of subject demographics on the human AH PK.

Methods

We summarized demographic data, sampling time points, sample size per time point and PK parameters to investigate correlations in the studies submitted to the FDA.

Results

In the evaluation of subject-specific covariates, the area under the concentration-time curves (AUC) and maximum concentrations (Cmax) were significantly different among ethnicities and age groups. Gender was not primarily associated with differences in AH PK.

Conclusions

Our results suggest that the difference in ethnicity and age of the study population play an important role in the AH PK profiles of topical ophthalmic corticosteroid suspensions. Considering the subject-specific covariate effects in designing bioequivalence studies with AH PK endpoints could reduce bias from covariate imbalance and help identify true effects of formulation differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv. 2006;3(2):275–87.

    Article  CAS  Google Scholar 

  2. Edelhauser HF, Maren TH. Permeability of human cornea and sclera to sulfonamide carbonic anhydrase inhibitors. Arch Ophthalmol (Chicago, Ill : 1960). 1988;106(8):1110–5.

    Article  CAS  Google Scholar 

  3. Durairaj C. Ocular Pharmacokinetics. Handb Exp Pharmacol. 2017;242:31–55.

    Article  CAS  Google Scholar 

  4. Ahmed I, Patton TF. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26(4):584–7.

    CAS  PubMed  Google Scholar 

  5. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  Google Scholar 

  6. Alm A, Nilsson SF. Uveoscleral outflow--a review. Exp Eye Res. 2009;88(4):760–8.

    Article  CAS  Google Scholar 

  7. Kang-Mieler JJ, Osswald CR, Mieler WF. Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv. 2014;11(10):1647–60.

    Article  CAS  Google Scholar 

  8. Baranowski P, Karolewicz B, Gajda M, Pluta J. Ophthalmic drug dosage forms: characterisation and research methods. Sci World J. 2014;2014:861904.

    Article  Google Scholar 

  9. FDA. Product-Specific Guidances for Generic Drug Development 2017 [Available from: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm075207.htm.

  10. Choi SH, Lionberger RA. Clinical, pharmacokinetic, and in vitro studies to support bioequivalence of ophthalmic drug products. AAPS J. 2016;18(4):1032–8.

    Article  CAS  Google Scholar 

  11. Kozak D WY. OGD citizen petition consult response memorandum (DRAFT). 2016.

  12. Shen M, Machado SG. Bioequivalence evaluation of sparse sampling pharmacokinetics data using bootstrap resampling method. J Biopharm Stat. 2017;27(2):257–64.

    Article  Google Scholar 

  13. Blake CR, Lai WW, Edward DP. Racial and ethnic differences in ocular anatomy. Int Ophthalmol Clin. 2003;43(4):9–25.

    Article  Google Scholar 

  14. Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article  CAS  Google Scholar 

  15. Wang D, Amoozgar B, Porco T, Wang Z, Lin SC. Ethnic differences in lens parameters measured by ocular biometry in a cataract surgery population. PLoS One. 2017;12(6):e0179836.

    Article  Google Scholar 

  16. Zore M, Harris A, Tobe LA, Siesky B, Januleviciene I, Behzadi J, et al. Generic medications in ophthalmology. Br J Ophthalmol. 2013;97(3):253–7.

    Article  Google Scholar 

  17. Jonas JB, Iribarren R, Nangia V, Sinha A, Pardhi P, Shukla R, et al. Lens position and age: the Central India eye and medical study. Invest Ophthalmol Vis Sci. 2015;56(9):5309–14.

    Article  Google Scholar 

  18. Chen RI, Barbosa DT, Hsu CH, Porco TC, Lin SC. Ethnic differences in trabecular meshwork height by optical coherence tomography. JAMA Ophthalmol. 2015;133(4):437–41.

    Article  Google Scholar 

  19. Chang SW, Hu FR. Changes in corneal autofluorescence and corneal epithelial barrier function with aging. Cornea. 1993;12(6):493–9.

    Article  CAS  Google Scholar 

  20. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:52–9.

    Article  CAS  Google Scholar 

  21. Pleyer U, Ursell PG, Rama P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: are they all the same? Ophthalmol Therapy. 2013;2(2):55–72.

    Article  Google Scholar 

  22. Moss EB, Buys YM, Low SA, Yuen D, Jin YP, Chapman KR, et al. A randomized controlled trial to determine the effect of inhaled corticosteroid on intraocular pressure in open-angle Glaucoma and ocular hypertension: the ICOUGH study. J Glaucoma. 2017;26(2):182–6.

    PubMed  Google Scholar 

  23. Sheppard JD, Comstock TL, Cavet ME. Impact of the topical ophthalmic corticosteroid Loteprednol Etabonate on intraocular pressure. Adv Ther. 2016;33(4):532–52.

    Article  CAS  Google Scholar 

  24. Roy B, Riley C, Herrin J, Spatz ES, Arora A, Kell KP, et al. Identifying county characteristics associated with resident well-being: a population based study. PLoS One. 2018;13(5):e0196720.

    Article  Google Scholar 

  25. Green SB, Byar DP. The effect of stratified randomization on size and power of statistical tests in clinical trials. J Chronic Dis. 1978;31(6–7):445–54.

    Article  CAS  Google Scholar 

  26. Wellek S, Blettner M. On the proper use of the crossover design in clinical trials: part 18 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2012;109(15):276–81.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoriko Harigaya.

Additional information

Guest Editors: Hovhannes J Gukasyan, Shumet Hailu, and Thomas Karami

Disclaimer

This article reflects the views of the authors and should not be construed to represent the views or policies of the FDA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harigaya, Y., Jiang, X., Zhang, H. et al. Bioequivalence Study Methods with Pharmacokinetic Endpoints for Topical Ophthalmic Corticosteroid Suspensions and Effects of Subject Demographics. Pharm Res 36, 13 (2019). https://doi.org/10.1007/s11095-018-2537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2537-8

KEY WORDS

Navigation