Skip to main content

Advertisement

Log in

New Classes of Polycationic Compounds as Preservatives for Ophthalmic Formulations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this research work was to develop new polycationic compounds based on pyridine and piperidine structures with high antimicrobial activities against bacteria and fungi. Furthermore, the compounds should offer a lower toxicity than the commonly used preservatives for ophthalmic formulations, such as benzalkonium chloride (BAC) and polyquaternium-1 (PQ1).

Methods

Two polymers and three dimeric compounds were developed. Minimum inhibitory concentrations were determined for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Aspergillus brasiliensis. The compounds were characterized regarding their impact on cell viability, cytotoxicity, epithelial integrity and surface tension. MTT and CytoTox-Glo™ assays, permeation studies with mannitol and transepithelial electrical resistance (TEER) measurements were performed on human corneal epithelial or MDCK I cells. BAC and PQ1 were used as references.

Results

Three polycationic compounds exhibited high antimicrobial activity against the tested microorganisms comparable to that of BAC. Four compounds were tolerated as well as or better than PQ1. In addition, the TEER, permeability and surface tension were only affected by compounds with amphiphilic properties.

Conclusion

The pyridine- and piperidine-based polycationic compounds are promising candidates as new preservatives for ophthalmic formulations. Their high antimicrobial efficacy and good tolerability indicate a different mechanism of action compared to BAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BAC:

Benzalkonium chloride

cfu:

Colony forming unit

DiPy:

Dimer with dipyridine motif

DiPyC10:

Dimer with dipyridine motif and C10 alkyl chain in the end group

DiPyC12:

Dimer with dipyridine motif and C12 alkyl chain in the end group

GPC:

Gel permeation chromatography

HCE-T:

Human corneal epithelial cells

KRB:

Krebs-Ringer buffer

log P:

logarithmic partition coefficient

MDCK I:

Madin-Darby canine kidney cells

MHB:

Mueller-Hinton broth

MIC:

Minimum inhibitory concentration

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PDA:

Potato dextrose agar

PolyPi:

Polymer with dipiperidine motif

PolyPy:

Polymer with dipyridine motif

PQ1:

Polyquaternium-1

SDA:

Sabouraud dextrose agar

SD:

Standard deviation

TEER:

Transepithelial electrical resistance

TSA:

Tryptic soy agar

TSB:

Tryptic soy broth

References

  1. European Pharmacopoeia (Ph. Eur.) 9th ed. Strasbourg; 2018.

  2. Furrer P, Mayer JM, Gurny R. Ocular tolerance of preservatives and alternatives. Eur J Pharm Biopharm. 2002;53(3):263–80.

    Article  CAS  Google Scholar 

  3. Freeman PD, Kahook MY. Preservatives in topical ophthalmic medications: historical and clinical perspectives. Expert Rev Ophthalmol. 2009;4(1):59–64.

    Article  Google Scholar 

  4. Kaur IP, Lal S, Rana C, Kakkar S, Singh H. Ocular preservatives: associated risks and newer options. Cutan Ocul Toxicol. 2009;28(3):93–103.

    Article  CAS  Google Scholar 

  5. Epstein SP, Ahdoot M, Marcus E, Asbell PA. Comparative toxicity of preservatives on immor-talized corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther. 2009;25(2):113–9.

    Article  CAS  Google Scholar 

  6. Meloni M, Pauly A, Servi BD, Varlet BL, Baudouin C. Occludin gene expression as an early in vitro sign for mild eye irritation assessment. Toxicol in Vitro. 2010;24(1):276–85.

    Article  CAS  Google Scholar 

  7. Xu M, Sivak JG, McCanna DJ. Comparison of the effects of ophthalmic solutions on human corneal epithelial cells using fluorescent dyes. J Ocul Pharmacol Ther. 2013;29(9):794–802.

    Article  CAS  Google Scholar 

  8. Nakagawa S, Usui T, Yokoo S, Omichi S, Kimakura M, Mori Y, et al. Toxicity evaluation of antiglaucoma drugs using stratified human cultivated corneal epithelial sheets. Invest Ophthalmol Vis Sci. 2012;53(9):5154–60.

  9. Tripathi BJ, Tripathi RC, Kolli SP. Cytotoxicity of ophthalmic preservatives on human corneal epithelium. Lens Eye Toxic Res. 1992;9(3–4):361–75.

    CAS  PubMed  Google Scholar 

  10. Epstein SP, Chen D, Asbell PA. Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther. 2009;25(5):415–24.

    Article  CAS  Google Scholar 

  11. Goto Y, Ibaraki N, Miyake K. Human lens epithelial cell damage and stimulation of their secretion of chemical mediators by benzalkonium chloride rather than latanoprost and timolol. Arch Ophthalmol. 2003;121(6):835–9.

    Article  CAS  Google Scholar 

  12. Pauly A, Meloni M, Brignole-Baudouin F, Warnet JM, Baudouin C. Multiple endpoint analysis of the 3D-reconstituted corneal epithelium after treatment with benzalkonium chloride: early detection of toxic damage. Invest Ophthalmol Vis Sci. 2009;50(4):1644–52.

    Article  Google Scholar 

  13. de Saint Jean M, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C. Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. Invest Ophthalmol Vis Sci. 1999;40(3):619–30.

    PubMed  Google Scholar 

  14. Debbasch C, Brignole F, Pisella PJ, Warnet JM, Rat P, Baudouin C. Quaternary ammoniums and other preservatives’ contribution in oxidative stress and apoptosis on Chang conjunctival cells. Invest Ophthalmol Vis Sci. 2001;42(3):642–52.

    CAS  PubMed  Google Scholar 

  15. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Prog Retin Eye Res. 2010;29(4):312–34.

    Article  CAS  Google Scholar 

  16. Ammar DA, Kahook MY. Effects of benzalkonium chloride- or polyquad-preserved fixed combination glaucoma medications on human trabecular meshwork cells. Mol Vis. 2011;17:1806–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez Bernal D, Ubels J. Quantitative evaluation of the corneal epithelial barrier: effect of artificial tears and preservatives. Curr Eye Res. 1991;10(7):645–56.

    Article  CAS  Google Scholar 

  18. Liang H, Brignole-Baudouin F, Riancho L, Baudouin C. Reduced in vivo ocular surface toxicity with polyquad-preserved travoprost versus benzalkonium-preserved travoprost or latanoprost ophthalmic solutions. Ophthalmic Res. 2012;48(2):89–101.

    Article  CAS  Google Scholar 

  19. Labbé A, Pauly A, Liang H, Brignole-Baudouin F, Martin C, Warnet JM, et al. Comparison of toxicological profiles of benzalkonium chloride and polyquaternium-1: an experimental study. J Ocul Pharmacol Ther. 2006;22(4):267–78.

  20. Codling CE, Maillard JY, Russell AD. Aspects of the antimicrobial mechanisms of action of a polyquaternium and an amidoamine. J Antimicrob Chemother. 2003;51(5):1153–8.

    Article  CAS  Google Scholar 

  21. Codling CE, Hann AC, Maillard JY, Russell AD. An investigation into the antimicrobial mechanisms of action of two contact lens biocides using electron microscopy. Cont Lens Anterior Eye. 2005;28(4):163–8.

    Article  Google Scholar 

  22. Zanetti S, Fiori PL, Pinna A, Usai S, Carta F, Fadda G. Susceptibility of Acanthamoeba castellanii to contact lens disinfecting solutions. Antimicrob Agents Chemother. 1995;39(7):1596–8.

    Article  CAS  Google Scholar 

  23. Phillips AP, Mentha J. Synthetic hypotensive agents. III. Some 4,4′-Bipiperidines. J Am Chem Soc. 1955;77(23):6393–5.

    Article  CAS  Google Scholar 

  24. European Committee on Antimicrobial Susceptibility Testing. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. EUCAST Definitive Document E.DEF 7.3.1; 2017. Available from: http://www.eucast.org/ast_of_fungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/. Accessed 05 Nov 2018.

  25. European Committee on Antimicrobial Susceptibility Testing. Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. EUCAST Definitive Document E.DEF 9.3.1; 2017. Available from: http://www.eucast.org/ast_of_fungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/. Accessed 05 November 2018.

  26. DIN German Institute for Standardization. Clinical laboratory testing and in vitro diagnostic test systems - susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices - part 1: reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases (ISO 20776-1:2006); German version. Berlin: Beuth Verlag GmbH; 2007.

  27. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, et al. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci. 1995;36(3):614–21.

  28. Hahne M, Zorn-Kruppa M, Guzman G, Brandner JM, Haltner-Ukomado E, Wätzig H, et al. Prevalidation of a human cornea construct as an alternative to animal corneas for in vitro drug absorption studies. J Pharm Sci. 2012;101(8):2976–88.

  29. Hahne M, Reichl S. Development of a serum-free human cornea construct for in vitro drug absorption studies: the influence of varying cultivation parameters on barrier characteristics. Int J Pharm. 2011;416(1):268–79.

    Article  CAS  Google Scholar 

  30. Ikeda T, Yamaguchi H, Tazuke S. Molecular weight dependence of antibacterial activity in cationic disinfectants. J Bioact Compat Polym. 1990;5(1):31–41.

    Article  CAS  Google Scholar 

  31. Strassburg A, Kracke F, Wenners J, Jemeljanova A, Kuepper J, Petersen H, et al. Nontoxic, hydrophilic cationic polymers - identified as class of antimicrobial polymers. Macromol Biosci. 2015;15(12):1710–23.

  32. Waschinski CJ, Herdes V, Schueler F, Tiller JC. Influence of satellite groups on telechelic antimicrobial functions of polyoxazolines. Macromol Biosci. 2005;5(2):149–56.

    Article  CAS  Google Scholar 

  33. de Saint Jean M, Debbasch C, Brignole F, Rat P, Warnet JM, Baudouin C. Toxicity of preserved and unpreserved antiglaucoma topical drugs in an in vitro model of conjunctival cells. Curr Eye Res. 2000;20(2):85–94.

    Article  Google Scholar 

  34. Grant RL, Yao C, Gabaldon D, Acosta D. Evaluation of surfactant cytotoxicity potential by primary cultures of ocular tissues: I. characterization of rabbit corneal epithelial cells and initial injury and delayed toxicity studies. Toxicology. 1992;76(2):153–76.

    Article  CAS  Google Scholar 

  35. Debbasch C, de La Salle SB, Brignole F, Rat P, Warnet JM, Baudouin C. Cytoprotective effects of hyaluronic acid and carbomer 934P in ocular surface epithelial cells. Invest Ophthalmol Vis Sci. 2002;43(11):3409–15.

    PubMed  Google Scholar 

  36. Cha SH, Lee JS, Oum BS, Kim CD. Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro. Clin Exp Ophthalmol. 2004;32(2):180–4.

    Article  Google Scholar 

  37. Kusano M, Uematsu M, Kumagami T, Sasaki H, Kitaoka T. Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo. Cornea. 2010;29(1):80–5.

    Article  Google Scholar 

  38. Paimela T, Ryhänen T, Kauppinen A, Marttila L, Salminen A, Kaarniranta K. The preservative polyquaternium-1 increases cytoxicity and NF-kappaB linked inflammation in human corneal epithelial cells. Mol Vis. 2012;18:1189–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ward SL, Walker TL, Dimitrijevich SD. Evaluation of chemically induced toxicity using an in vitro model of human corneal epithelium. Toxicol in Vitro. 1997;11(1–2):121–39.

    Article  CAS  Google Scholar 

  40. Nakamura T, Yamada M, Teshima M, Nakashima M, To H, Ichikawa N, et al. Electrophysiological characterization of tight junctional pathway of rabbit cornea treated with ophthalmic ingredients. Biol Pharm Bull. 2007;30(12):2360–4.

  41. Nakashima M, Nakamura T, Teshima M, To H, Uematsu M, Kitaoka T, et al. Breakdown eval-uation of corneal epithelial barrier caused by antiallergic eyedrops using an electrophysiologic method. J Ocul Pharmacol Ther. 2008;24(1):43–51.

  42. Uematsu M, Mohamed YH, Onizuka N, Ueki R, Inoue D, Fujikawa A, et al. Less invasive corneal transepithelial electrical resistance measurement method. Ocul Surf. 2016;14(1):37–42.

  43. Burstein NL. Preservative alteration of corneal permeability in humans and rabbits. Invest Ophthalmol Vis Sci. 1984;25(12):1453–7.

    CAS  PubMed  Google Scholar 

  44. Beißner N, Mattern K, Dietzel A, Reichl S. DynaMiTES - a dynamic cell culture platform for in vitro drug testing PART 2 - ocular DynaMiTES for drug absorption studies of the anterior eye. Eur J Pharm Biopharm. 2018;126:166–76.

    Article  Google Scholar 

  45. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99(4):703–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Reichl.

Additional information

Guest Editors: Hovhannes J Gukasyan, Shumet Hailu, and Thomas Karami

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Deylen, D., Dreher, C., Seidelmann, O. et al. New Classes of Polycationic Compounds as Preservatives for Ophthalmic Formulations. Pharm Res 36, 11 (2019). https://doi.org/10.1007/s11095-018-2536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2536-9

KEY WORDS

Navigation