Pharmaceutical Research

, 35:217 | Cite as

Targeted Ocular Drug Delivery with Pharmacokinetic/Pharmacodynamic Considerations

  • Jie ShenEmail author
  • Guang Wei Lu
  • Patrick Hughes
Research Paper
Part of the following topical collections:
  1. Ophthalmic Drug Discovery and Development


The development of ophthalmic drug delivery systems is a long and comprehensive process including research, nonclinical, and clinical development stages. It is critical to understand the similarity and differences between animal models and patients. There are many anatomically and physiologically important parameters for targeted drug delivery into eyes. This paper reviews the constraints to various routes of ocular drug delivery and discusses the respective pharmacokinetic considerations, to lay the foundation for formulation approaches pharmaceutical scientists can use to maximize successful drug delivery for each route. The overall goal is to give both researchers and drug developers a better understanding of ocular drug delivery and offer tools to successfully develop new medicines that will fulfil unmet medical needs and improve patients’ quality of life.

Key words

formulation ocular pharmacokinetic pharmacodynamic sustained release targeted delivery 


  1. 1.
    Bourne RRA, Flaxman SR, Braithwaite T, Cicinelli MV, Das A, Jonas JB, et al. Vision loss expert G. magnitude, temporal trends, and projections of the global prevalence of blindness and distance and near vision impairment: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(9):e888–97.CrossRefGoogle Scholar
  2. 2.
    Ananthula HKVR, Barot M, Mitra AK. Bioavailability. Philadelphia: Lippincott Williams & Wilkins; 2009.Google Scholar
  3. 3.
    Gooch N, Molokhia SA, Condie R, Burr RM, Archer B, Ambati BK, et al. Ocular drug delivery for glaucoma management. Pharmaceutics. 2012;4(1):197–211.CrossRefGoogle Scholar
  4. 4.
    Richardson C, Brunton L, Olleveant N, Henson DB, Pilling M, Mottershead J, et al. A study to assess the feasibility of undertaking a randomized controlled trial of adherence with eye drops in glaucoma patients. Patient Prefer Adherence. 2013;7:1025–39.CrossRefGoogle Scholar
  5. 5.
    Maurice DM. MS. ocular pharmacokinetics. Berlin: Springer-Verlag; 1986.Google Scholar
  6. 6.
    Retty I.K. AMG. Ocular Therapeutics and Drug Delivery: An overview. Lancaster, Pennsylvania: Technomic Publishing Company; 1996.Google Scholar
  7. 7.
    Ghate D, Edelhauser HF. Barriers to glaucoma drug delivery. J Glaucoma. 2008;17(2):147–56.CrossRefGoogle Scholar
  8. 8.
    Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–81.CrossRefGoogle Scholar
  9. 9.
    R.D. S. Ocular pharmacokinetics and pharmacodynamics. New York: Marcel Dekker; 1993.Google Scholar
  10. 10.
    Butovich IA, Lu H, McMahon A, Eule JC. Toward an animal model of the human tear film: biochemical comparison of the mouse, canine, rabbit, and human meibomian lipidomes. Invest Ophthalmol Vis Sci. 2012;53(11):6881–96.CrossRefGoogle Scholar
  11. 11.
    Schoenwald RD, Huang HS. Corneal penetration behavior of beta-blocking agents I: physiochemical factors. J Pharm Sci. 1983;72(11):1266–72.CrossRefGoogle Scholar
  12. 12.
    Acheampong AA, Small D, Baumgarten V, Welty D, Tang-Liu D. Formulation effects on ocular absorption of brimonidine in rabbit eyes. J Ocul Pharmacol Ther. 2002;18(4):325–37.CrossRefGoogle Scholar
  13. 13.
    Attar M, Schiffman R, Borbridge L, Farnes Q, Welty D. Ocular pharmacokinetics of 0.45% ketorolac tromethamine. Clin Ophthalmol. 2010;4:1403–8.CrossRefGoogle Scholar
  14. 14.
    Mandell AI, Stentz F, Kitabchi AE. Dipivalyl epinephrine: a new pro-drug in the treatment of glaucoma. Ophthalmology. 1978;85(3):268–75.CrossRefGoogle Scholar
  15. 15.
    Wei CP, Anderson JA, Leopold I. Ocular absorption and metabolism of topically applied epinephrine and a dipivalyl ester of epinephrine. Invest Ophthalmol Vis Sci. 1978;17(4):315–21.PubMedGoogle Scholar
  16. 16.
    Chrai SS, Robinson JR. Ocular evaluation of methylcellulose vehicle in albino rabbits. J Pharm Sci. 1974;63(8):1218–23.CrossRefGoogle Scholar
  17. 17.
    Patton TF, Robinson JR. Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J Pharm Sci. 1975;64(8):1312–6.CrossRefGoogle Scholar
  18. 18.
    Si EC, Cheung PS, Bowman L, Hosseini K. Ocular pharmacokinetics of AzaSite Xtra-2% azithromycin formulated in a DuraSite delivery system. Curr Eye Res. 2009;34(6):485–91.CrossRefGoogle Scholar
  19. 19.
    Abul Kalam M, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K, et al. Part II: enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J Biomed Mater Res A. 2013;101((6):1828–36.CrossRefGoogle Scholar
  20. 20.
    Glogowski S, Lowe E, Siou-Mermet R, Ong T, Richardson M. Prolonged exposure to loteprednol etabonate in human tear fluid and rabbit ocular tissues following topical ocular administration of Lotemax gel, 0.5%. J Ocul Pharmacol Ther. 2014;30(1):66–73.CrossRefGoogle Scholar
  21. 21.
    Si EC, Bowman LM, Hosseini K. Pharmacokinetic comparisons of bromfenac in DuraSite and Xibrom. J Ocul Pharmacol Ther. 2011;27(1):61–6.CrossRefGoogle Scholar
  22. 22.
    Kaur IP, Aggarwal D, Singh H, Kakkar S. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1467–72.CrossRefGoogle Scholar
  23. 23.
    Schenker H, Maloney S, Liss C, Gormley G, Hartenbaum D. Patient preference, efficacy, and compliance with timolol maleate ophthalmic gel-forming solution versus timolol maleate ophthalmic solution in patients with ocular hypertension or open-angle glaucoma. Clin Ther. 1999;21(1):138–47.CrossRefGoogle Scholar
  24. 24.
    Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K. Nonionic surfactant vesicles in ocular delivery: innovative approaches and perspectives. Biomed Res Int. 2014;2014:263604.CrossRefGoogle Scholar
  25. 25.
    Myers JS, Vold S, Zaman F, Williams JM, Hollander DA. Bimatoprost 0.01% or 0.03% in patients with glaucoma or ocular hypertension previously treated with latanoprost: two randomized 12-week trials. Clin Ophthalmol. 2014;8:643–52.CrossRefGoogle Scholar
  26. 26.
    Marsh RJ, Maurice DM. The influence of non-ionic detergents and other surfactants on human corneal permeability. Exp Eye Res. 1971;11(1):43–8.CrossRefGoogle Scholar
  27. 27.
    Saettone MF, Chetoni P, Cerbai R, Mazzanti G, Braghiroli L. Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int J Pharm. 1996;142(1).CrossRefGoogle Scholar
  28. 28.
    Jiao J. Polyoxyethylated nonionic surfactants and their applications in topical ocular drug delivery. Adv Drug Deliv Rev. 2008;60(15):1663–73.CrossRefGoogle Scholar
  29. 29.
    Grzeskowiak E. Biopharmaceutical availability of sulphadicramide from ocular ointments in vitro. Eur J Pharm Sci. 1998;6(3):247–53.CrossRefGoogle Scholar
  30. 30.
    Grass GM, Wood RW, Robinson JR. Effects of calcium chelating agents on corneal permeability. Invest Ophthalmol Vis Sci. 1985;26(1):110–3.PubMedGoogle Scholar
  31. 31.
    Curren RD, Harbell JW. In vitro alternatives for ocular irritation. Environ Health Perspect. 1998;106(Suppl 2):485–92.CrossRefGoogle Scholar
  32. 32.
    Lang JCRRE, Jani R. Ophthalmic preparations. Philadelphia: Lippincott Williams & Wilkins; 2005.Google Scholar
  33. 33.
    Chee SP. Moxifloxacin punctum plug for sustained drug delivery. J Ocul Pharmacol Ther. 2012;28(4):340–9.CrossRefGoogle Scholar
  34. 34.
    QLT I. QLT Announces Phase II Clinical Trial Results and Development Plans for the Punctal Plug Delivery System [Press Release]. Available from:
  35. 35. Safety and Efficacy of a Drug Delivery System in Glaucoma. 2018 July 6. Available from:
  36. 36.
    Abelson MB, Lafond a. Glaucoma and Dry Eye: A Tough Combo. Review of Ophthalmology. 2011.Google Scholar
  37. 37.
    Hehl EM, Beck R, Luthard K, Guthoff R, Drewelow B. Improved penetration of aminoglycosides and fluorozuinolones into the aqueous humour of patients by means of Acuvue contact lenses. Eur J Clin Pharmacol. 1999;55(4):317–23.CrossRefGoogle Scholar
  38. 38.
    Sedlacek J. Possibility of the application of ophthalmic drugs with the use of gel contact lenses. Cesk Oftalmol. 1965;21(6):509–12.PubMedGoogle Scholar
  39. 39.
    Gulsen D, Chauhan A. Ophthalmic drug delivery through contact lenses. Invest Ophthalmol Vis Sci. 2004;45(7):2342–7.CrossRefGoogle Scholar
  40. 40.
    Hurmeric V, Vaddavalli P, Galor A, Perez VL, Roman JS, Yoo SH. Single and multiple injections of subconjunctival ranibizumab for early, recurrent pterygium. Clin Ophthalmol. 2013;7:467–73.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Oguz H. Subconjunctival bevacizumab injection in pterygium surgery. Cornea. 2012;31(11):1359.CrossRefGoogle Scholar
  42. 42.
    Baum J, Barza M. Topical vs subconjunctival treatment of bacterial corneal ulcers. Ophthalmology. 1983;90(2):162–8.CrossRefGoogle Scholar
  43. 43.
    Cheng YH, Hung KH, Tsai TH, Lee CJ, Ku RY, Chiu AW, et al. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension. Acta Biomater. 2014;10(10):4360–6.CrossRefGoogle Scholar
  44. 44.
    Jessen BA, Shiue MH, Kaur H, Miller P, Leedle R, Guo H, et al. Safety assessment of subconjunctivally implanted devices containing latanoprost in Dutch-belted rabbits. J Ocul Pharmacol Ther. 2013;29(6):574–85.CrossRefGoogle Scholar
  45. 45.
    Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–31.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Pehlivan SB, Yavuz B, Calamak S, Ulubayram K, Kaffashi A, Vural I, et al. Preparation and in vitro/in vivo evaluation of cyclosporin A-loaded nanodecorated ocular implants for subconjunctival application. J Pharm Sci. 2015;104(5):1709–20.CrossRefGoogle Scholar
  47. 47.
    Peng Y, Ang M, Foo S, Lee WS, Ma Z, Venkatraman SS, et al. Biocompatibility and biodegradation studies of subconjunctival implants in rabbit eyes. PLoS One. 2011;6(7):e22507.CrossRefGoogle Scholar
  48. 48.
    Voss K, Falke K, Bernsdorf A, Grabow N, Kastner C, Sternberg K, et al. Development of a novel injectable drug delivery system for subconjunctival glaucoma treatment. J Control Release. 2015;214:1–11.CrossRefGoogle Scholar
  49. 49.
    Natu MV, Gaspar MN, Fontes Ribeiro CA, Cabrita AM, de Sousa HC, Gil MH. In vitro and in vivo evaluation of an intraocular implant for glaucoma treatment. Int J Pharm. 2011;415(1–2):73–82.CrossRefGoogle Scholar
  50. 50.
    Clayton JA, Perry C, Robinson M. A phase 1 clinical trial to study the safety of a sustained-release subconjunctival cyclosporine (CsA) implant for ocular graft-vs-host disease (GVHD). FL: In.Association for Research in Vision and Ophthalmology Fort Lauderdale; 2009.Google Scholar
  51. 51.
    Kim H, Csaky KG, Gilger BC, Dunn JP, Lee SS, Tremblay M, et al. Preclinical evaluation of a novel episcleral cyclosporine implant for ocular graft-versus-host disease. Invest Ophthalmol Vis Sci. 2005;46(2):655–62.CrossRefGoogle Scholar
  52. 52.
    Lee SS, Kim H, Wang NS, Bungay PM, Gilger BC, Yuan P, et al. A pharmacokinetic and safety evaluation of an episcleral cyclosporine implant for potential use in high-risk keratoplasty rejection. Invest Ophthalmol Vis Sci. 2007;48(5):2023–9.CrossRefGoogle Scholar
  53. 53.
    Lai JY, Hsieh AC. A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials. 2012;33(7):2372–87.CrossRefGoogle Scholar
  54. 54.
    Lewis RACW, Day DG, Craven ER, Bejanian M, Lee SS. Bimatoprost sustained-release implants for glaucoma therapy: interim results from a 24-month Phase1/2 clinical trial. Las Vegas: In.American Academy of Ophthalmology Annual Meeting; 2015.Google Scholar
  55. 55.
    Kodjikian L, Couprie J, Hachicha W, Timour Q, Devouassoux M, Builles N, et al. Experimental intracameral injection of vancomycin microparticles in rabbits. Invest Ophthalmol Vis Sci. 2010;51(8):4125–32.CrossRefGoogle Scholar
  56. 56.
    Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm. 2004;57(2):207–12.CrossRefGoogle Scholar
  57. 57.
    Grewal DS, Jain R, Kumar H, Grewal SP. Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy a pilot study. Ophthalmology. 2008;115(12):2141–5 e2142.CrossRefGoogle Scholar
  58. 58.
    Kahook MY, Schuman JS, Noecker RJ. Intravitreal bevacizumab in a patient with neovascular glaucoma. Ophthalmic Surg Lasers Imaging. 2006;37(2):144–6.PubMedGoogle Scholar
  59. 59.
    Li Z, Van Bergen T, Van de Veire S, Van de Vel I, Moreau H, Dewerchin M, et al. Inhibition of vascular endothelial growth factor reduces scar formation after glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2009;50(11):5217–25.CrossRefGoogle Scholar
  60. 60.
    Vandewalle E, Abegao Pinto L, Van Bergen T, Spielberg L, Fieuws S, Moons L, et al. Intracameral bevacizumab as an adjunct to trabeculectomy: a 1-year prospective, randomised study. Br J Ophthalmol. 2014;98(1):73–8.CrossRefGoogle Scholar
  61. 61.
    Han Q, Wang Y, Li X, Peng R, Li A, Qian Z, et al. Effects of bevacizumab loaded PEG-PCL-PEG hydrogel intracameral application on intraocular pressure after glaucoma filtration surgery. J Mater Sci Mater Med. 2015;26(8):225.CrossRefGoogle Scholar
  62. 62.
    Huang W, Chen S, Gao X, Yang M, Zhang J, Li X, et al. Inflammation-related cytokines of aqueous humor in acute primary angle-closure eyes. Invest Ophthalmol Vis Sci. 2014;55(2):1088–94.CrossRefGoogle Scholar
  63. 63.
    Memarzadeh F, Varma R, Lin LT, Parikh JG, Dustin L, Alcaraz A, et al. Postoperative use of bevacizumab as an antifibrotic agent in glaucoma filtration surgery in the rabbit. Invest Ophthalmol Vis Sci. 2009;50(7):3233–7.CrossRefGoogle Scholar
  64. 64.
    Xie L, Shi W, Wang Z, Bei J, Wang S. Prolongation of corneal allograft survival using cyclosporine in a polylactide-co-glycolide polymer. Cornea. 2001;20(7):748–52.CrossRefGoogle Scholar
  65. 65.
    Shi W, Xie L, Wang S. Prolongation of corneal allograft survival in mice with a cyclosporine drug delivery system implant. Zhonghua Yan Ke Za Zhi. 2002;38(8):502–5.PubMedGoogle Scholar
  66. 66.
    Hollo G. The side effects of the prostaglandin analogues. Expert Opin Drug Saf. 2007;6(1):45–52.CrossRefGoogle Scholar
  67. 67.
    Jayaprakasam A, Ghazi-Nouri S. Periorbital fat atrophy - an unfamiliar side effect of prostaglandin analogues. Orbit. 2010;29(6):357–9.CrossRefGoogle Scholar
  68. 68.
    Park J, Cho HK, Moon JI. Changes to upper eyelid orbital fat from use of topical bimatoprost, travoprost, and latanoprost. Jpn J Ophthalmol. 2011;55(1):22–7.CrossRefGoogle Scholar
  69. 69.
    Shen J, Robinson, M.R., Attar, M. Comparative ocular distribution of 14C-latanoprost following a single intracameral or repeated topical ocular dose in dogs. In.Association for Research in Vision and Ophthalmology Annual Meeting. Seattle; 2016.Google Scholar
  70. 70.
    Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96.CrossRefGoogle Scholar
  71. 71.
    Xu L, Lu T, Tuomi L, Jumbe N, Lu J, Eppler S, et al. Pharmacokinetics of ranibizumab in patients with neovascular age-related macular degeneration: a population approach. Invest Ophthalmol Vis Sci. 2013;54(3):1616–24.CrossRefGoogle Scholar
  72. 72.
    Kuno N, Fujii S. Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs Aging. 2010;27(2):117–34.CrossRefGoogle Scholar
  73. 73.
    Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27(10):2043–53.CrossRefGoogle Scholar
  74. 74.
    Chang-Lin JE, Attar M, Acheampong AA, Robinson MR, Whitcup SM, Kuppermann BD, et al. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Invest Ophthalmol Vis Sci. 2011;52(1):80–6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinical Pharmacology, Nonclinical and Translational SciencesCaliforniaUSA
  2. 2.Ophthalmic Product DevelopmentTWi Pharmaceuticals, Inc.TaipeiChina
  3. 3.Applied ResearchGlaukos CorpCaliforniaUSA

Personalised recommendations