Pharmaceutical Research

, 35:113 | Cite as

Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation

  • Shubhajit Paul
  • Changquan Calvin Sun
Research Paper



To investigate how excipient matrix affects punch sticking propensity of active pharmaceutical ingredients (API), with the focus on the effect of bonding interactions between API-API (F2) and API-excipient (F3).


Sticking kinetics of direct compression formulations, consisting of 20% of celecoxib (CEL) or ibuprofen (IBN) in different excipient matrices, i.e., microcrystalline cellulose (Avicel PH102 and Avicel PH105 dry coated with nano-sized silica (PH105(n)), hypromellose (K15 M), and a 3:1 mixture between starch and Avicel PH102 (S3P1), was assessed using a removable punch tip on a compaction simulator. The amount of material transferred to punch was determined gravimetrically every 10 compressions up to 50 compactions.


CEL exhibited higher F2 than IBN. CEL also exhibited more sticking under otherwise identical compaction conditions in the same excipient matrix. Among different excipient matrices, sticking propensity of both APIs followed the ascending order: PH105(n) < PH102 < K15 M < S3P1. This order was exactly opposite to the order of F3, confirming that greater bonding strength of the formulation favors lower sticking propensity of a given API.


For an API prone to punch sticking, judicious use of excipients to render higher tablet mechanical strength can mitigate severity of punch sticking.


direct compression powder plasticity punch sticking tablet tensile strength 



API-API cohesive interaction


API-excipient adhesive interaction




Critical porosity


Excipient-excipient cohesive interaction


Hydroxypropyl methyl cellulose




Microcrystalline cellulose


Plasticity parameter


Punch-API adhesive interaction


Starch + MCC (3:1)


Tablet tensile strength


Tensile strength at zero porosity

Supplementary material

11095_2018_2396_MOESM1_ESM.docx (153 kb)
ESM 1 (DOCX 152 kb)


  1. 1.
    Abdel-Hamid S, Betz G. A novel tool for the prediction of tablet sticking during high speed compaction. Pharm Dev Technol. 2012;17(6):747–54.CrossRefPubMedGoogle Scholar
  2. 2.
    Otsuka A. Adhesive properties and related phenomena for powdered pharmaceuticals. Yakugaku Zasshi. 1998;118(4):127–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Al-Karawi C, Lukášová I, Sakmann A, Leopold CS. Novel aspects on the direct compaction of ibuprofen with special focus on sticking. Powder Technol. 2017;317(Supplement C):370–80.CrossRefGoogle Scholar
  4. 4.
    McDermott TS, Farrenkopf J, Hlinak A, Neilly JP, Sauer D. A material sparing method for quantitatively measuring tablet sticking. Powder Technol. 2011;212(1):240–52.CrossRefGoogle Scholar
  5. 5.
    Paul S, Taylor LJ, Murphy B, Krzyzaniak JF, Dawson N, Mullarney MP, et al. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals. Int J Pharm. 2017;521(1–2):374–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Waknis V, Chu E, Schlam R, Sidorenko A, Badawy S, Yin S, et al. Molecular basis of crystal morphology-dependent adhesion behavior of mefenamic acid during tableting. Pharm Res. 2014;31(1):160–72.CrossRefPubMedGoogle Scholar
  7. 7.
    Paul S, Wang K, Taylor LJ, Murphy B, Krzyzaniak J, Dawson N, et al. Dependence of punch sticking on compaction pressure-roles of particle deformability and tablet tensile strength. J Pharm Sci. 2017;106(8):2060–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Hooper D, Clarke FC, Docherty R, Mitchell JC, Snowden MJ. Effects of crystal habit on the sticking propensity of ibuprofen—A case study. Int J Pharm. 2017;531(1):266–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Tsosie H, Thomas J, Strong J, Zavaliangos A. Scanning electron microscope observations of powder sticking on punches during a limited number (N < 5) of compactions of acetylsalicylic acid. Pharm Res. 2017;34(10):2012–24.CrossRefPubMedGoogle Scholar
  10. 10.
    Corn M. The adhesion of solid particles to solid surfaces. II. J Air Pollut Control Assoc. 1961;11(12):566–84.CrossRefPubMedGoogle Scholar
  11. 11.
    Corn M. The adhesion of solid particles to solid surfaces, I. a review. J Air Pollut Control Assoc. 1961;11(11):523–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH. Effects of surface roughness and chrome plating of punch tips on the sticking tendencies of model ibuprofen formulations. J Pharm Pharmacol. 2003;55(9):1223–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH, et al. Effect of punch tip geometry and embossment on the punch tip adherence of a model ibuprofen formulation. J Pharm Pharmacol. 2004;56(7):947–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Samiei L, Kelly K, Taylor L, Forbes B, Collins E, Rowland M. The influence of electrostatic properties on the punch sticking propensity of pharmaceutical blends. Powder Technol. 2017;305(Supplement C):509–17.CrossRefGoogle Scholar
  15. 15.
    Al-Karawi C, Kaiser T, Leopold CS. A novel technique for the visualization of tablet punch surfaces: characterization of surface modification, wear and sticking. Int J Pharm. 2017;530(1):440–54.CrossRefPubMedGoogle Scholar
  16. 16.
    Reed K, Davies C, Kelly K. Tablet sticking: using a ‘compression toolbox’ to assess multiple tooling coatings options. Powder Technol. 2015;285(Supplement C):103–9.CrossRefGoogle Scholar
  17. 17.
    Paul S, Taylor LJ, Murphy B, Krzyzaniak J, Dawson N, Mullarney MP, et al. Mechanism and kinetics of punch sticking of pharmaceuticals. J Pharm Sci. 2017;106(1):151–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Uchimoto T, Iwao Y, Yamamoto T, Sawaguchi K, Moriuchi T, Noguchi S, et al. Newly developed surface modification punches treated with alloying techniques reduce sticking during the manufacture of ibuprofen tablets. Int J Pharm. 2013;441(1–2):128–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Chattoraj S, Shi L, Sun CC. Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling. J Pharm Sci. 2011;100(11):4943–52.CrossRefPubMedGoogle Scholar
  20. 20.
    Kuentz M, Leuenberger H. Pressure susceptibility of polymer tablets as a critical property: a modified Heckel equation. J Pharm Sci. 1999;88(2):174–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Sun CC. Microstructure of tablet—pharmaceutical significance, assessment, and engineering. Pharm Res. 2017;34(5):918–28.CrossRefPubMedGoogle Scholar
  22. 22.
    Paul S, Sun CC. The suitability of common compressibility equations for characterizing plasticity of diverse powders. Int J Pharm. 2017;532:124–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Sun CC. A novel method for deriving true density of pharmaceutical solids including hydrates and water-containing powders. J Pharm Sci. 2004;93(3):646–53.CrossRefPubMedGoogle Scholar
  24. 24.
    Sun CC. True density of microcrystalline cellulose. J Pharm Sci. 2005;94(10):2132–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Sun CC. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm. 2008;346(1–2):93–101.CrossRefPubMedGoogle Scholar
  26. 26.
    Chang SY, Sun CC. Superior plasticity and tabletability of theophylline monohydrate. Mol Pharm. 2017;14(6):2047–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Sun CC. Quantifying errors in tableting data analysis using the Ryshkewitch equation due to inaccurate true density. J Pharm Sci. 2005;94(9):2061–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Paul S, Chang SY, Sun CC. The phenomenon of tablet flashing its impact on tableting data analysis and a method to eliminate it. Powder Technol. 2017;305:117–24.CrossRefGoogle Scholar
  29. 29.
    Fell JT, Newton JM. Determination of tablet strength by the diametral-compression test. J Pharm Sci. 1970;59(5):688–91.CrossRefPubMedGoogle Scholar
  30. 30.
    Ryshkewitch E. Compression strength of porous sintered alumina and zirconia. J Am Cerac Soc. 1953;36(2):65–8.CrossRefGoogle Scholar
  31. 31.
    Osei-Yeboah F, Sun CC. A pitfall in analyzing powder compactibility data using nonlinear regression. J Pharm Sci. 2013;102(3):1135–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Shi L, Sun CC. Transforming powder mechanical properties by core/shell structure: compressible sand. J Pharm Sci. 2010;99:4458–62.CrossRefPubMedGoogle Scholar
  33. 33.
    Tye CK, Sun CC, Amidon GE. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. J Pharm Sci. 2005;94(3):465–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Sun CC. Decoding powder tabletability: roles of particle adhesion and plasticity. J Adhes Sci Technol. 2011;25(4–5):483–99.CrossRefGoogle Scholar
  35. 35.
    Osei-Yeboah F, Chang SY, Sun CC. A critical examination of the phenomenon of bonding Area - bonding strength interplay in powder tableting. Pharm Res. 2016;33(5):1126–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Osei-Yeboah F, Lan Y, Sun CC. A top coating strategy with highly bonding polymers to enable direct tableting of multiple unit pellet system (MUPS). Powder Technol. 2017;305:591–6.CrossRefGoogle Scholar
  37. 37.
    Swaminathan S, Ramey B, Hilden J, Wassgren C. Characterizing the powder punch-face adhesive interaction during the unloading phase of powder compaction. Powder Technol. 2017;315:410–21.CrossRefGoogle Scholar
  38. 38.
    Perumalla SR, Shi L, Sun CC. Ionized form of acetaminophen with improved compaction properties. CrystEngComm. 2012;14(7):2389–90.CrossRefGoogle Scholar
  39. 39.
    Alderborn G, Nystrom C. Radial and axial tensile strength and strength variability of paracetamol tablets. Acta Pharm Suec. 1984;21(1):1–8.PubMedGoogle Scholar
  40. 40.
    Wu CY, Ruddy OM, Bentham AC, Hancock BC, Best SM, Elliott JA. Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 2005;52(1–3):107–17.CrossRefGoogle Scholar
  41. 41.
    Patel S, Sun CC. Macroindentation hardness measurement-modernization and applications. Int J Pharm. 2016;506(1–2):262–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients, 6th edn. 2009.Google Scholar
  43. 43.
    Cui Y. A material science perspective of pharmaceutical solids. Int J Pharm. 2007;339:3–18.CrossRefPubMedGoogle Scholar
  44. 44.
    Heng PWS, Chan LW, Easterbrook MG, Li X. Investigation of the influence of mean HPMC particle size and number of polymer particles on the release of aspirin from swellable hydrophilic matrix tablets. J Control Release. 2001;76(1):39–49.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pharmaceutical Materials Science and Engineering Laboratory Department of Pharmaceutics, College of PharmacyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations