Pharmaceutical Research

, 35:112 | Cite as

Effect of Chemical Binding of Doxorubicin Hydrochloride to Gold Nanoparticles, Versus Electrostatic Adsorption, on the In Vitro Drug Release and Cytotoxicity to Breast Cancer Cells

  • Gamal M. Zayed
  • Islam Kamal
  • Wael A. Abdelhafez
  • Fahd M. Alsharif
  • Mohamed A. Amin
  • Montaser Sh. A. Shaykoon
  • Hatem A. Sarhan
  • Ahmed M. Abdelsalam
Research Paper
  • 315 Downloads

Abstract

Purpose

The selective delivery of chemotherapeutic agent to the affected area is mainly dependent on the mode of drug loading within the delivery system. This study aims to compare the physical method to the chemical method on the efficiency of loading DOX.HCl to GNPs and the specific release of the loaded drug at certain tissue.

Method

Bifunctional polyethylene glycol with two different functionalities, the alkanethiol and the carboxyl group terminals, was synthesized. Then, DOX·HCl was covalently linked via hydrazone bond, a pH sensitive bond, to the carboxyl functional group and the produced polymer was used to prepare drug functionalized nanoparticles. Another group of GNPs was coated with carboxyl containing polymer; loading the drug into this system by the means of electrostatic adsorption. Finally, the prepared system were characterized with respect to size, shape and drug release in acetate buffer pH 5 and PBS pH 7.4 Also, the effect of DOX.HCl loaded systems on cell viability was assessed using MCF-7 breast cancer cell line.

Results

The prepared nanoparticles were spherical in shape, small in size and monodisperse. The release rate of the chemically bound drug in the acidic pH was higher than the electrostatically adsorbed one. Moreover, both systems show little release at pH 7.4. Finally, cytotoxicity profiles against human breast adenocarcinoma cell line (MCF-7) exhibited greater cytotoxicity of the chemically bound drug over the electrostatically adsorbed one.

Conclusion

Chemical binding of DOX·HCl to the carboxyl group of PEG coating GNPs selectively delivers high amount of drug to tumour-affected tissue which leads to reducing the unwanted effects of the drug in the non-affected ones.

Key words

bifunctionalized PEG doxorubicin HCl electrostatic adsorption GNPs MCF-7 pH sensitive release 

Abbreviations

AIBN

Azobisisobutronitrile

ANOVA

Analysis of variance

DCM

Dichloromethane

DOX·HCl

Doxorubicin HCl

DMSO

Dimethyl sulfoxide

EPR

Enhanced permeability and retention

GNPs

Gold nanoparticles

HAuCl4.3 H3O

Hydrogen tetrachloroauric acid trihydrate

IC50

The concentration of substance required for 50% growth inhibition

MCF-7

Breast cancer cell line

MDR

Multi-drug resistance

MWCO

Molecular weight cut off

PCS

Photon correlation spectroscopy

PDI

Polydispersity index

P-gp

P-glycoprotein

PBS

Phosphate buffered saline

PEG

Polyethylene glycol

RES

Reticulo-endothelial system

SPR

Surface plasmon resonance

TEM

Transmission electron microscope

Supplementary material

11095_2018_2393_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1034 kb)

References

  1. 1.
    Clarke R, Leonessa F, Multidrug TB. Resistance/P-glycoprotein and breast Cancer: Review and meta-analysis. Semin Oncol. 2005;32(Supplement 7):9–15.CrossRefGoogle Scholar
  2. 2.
    Wang J, Wu L, Kou L, Xu M, Sun J, Wang Y, et al. Novel nanostructured enoxaparin sodium-PLGA hybrid carriers overcome tumor multidrug resistance of doxorubicin hydrochloride. Int J Pharm. 2016;513(1):218–26.CrossRefPubMedGoogle Scholar
  3. 3.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54(5):631–51.CrossRefPubMedGoogle Scholar
  4. 4.
    Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Ruan S, Yuan M, Zhang L, Hu G, Chen J, Cun X, et al. Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials. 2015;37:425–35.CrossRefPubMedGoogle Scholar
  6. 6.
    Choi SH, Byeon HJ, Choi JS, Thao L, Kim I, Lee ES, et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer. J Control Release. 2015;197:199–207.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang G, Yang Z, Lu W, Zhang R, Huang Q, Tian M, et al. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials. 2009;30(10):1928–36.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gao J, Huang X, Liu H, Zan F, Ren J. Colloidal stability of gold nanoparticles modified with thiol compounds: Bioconjugation and application in Cancer cell imaging. Langmuir. 2012;28(9):4464–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu X, Huang N, Wang H, Li H, Jin Q, Ji J. The effect of ligand composition on the in vivo fate of multidentate poly(ethylene glycol) modified gold nanoparticles. Biomaterials. 2013;34(33):8370–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Bednarski M, Dudek M, Knutelska J, Nowiński L, Sapa J, Zygmunt M, et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: in vivo studies. Pharmacol Rep. 2015;67(3):405–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics. 2011;21(7):440–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–37.CrossRefPubMedGoogle Scholar
  14. 14.
    del Rosario LS, Demirdirek B, Harmon A, Orban D, Uhrich KE. Micellar Nanocarriers assembled from doxorubicin-conjugated amphiphilic macromolecules (DOX–AM). Macromol Biosci. 2010;10(4):415–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Guerzoni LPB, Nicolas V, Angelova A. In vitro modulation of TrkB receptor signaling upon sequential delivery of curcumin-DHA loaded carriers towards promoting neuronal survival. Pharm Res. 2017;34(2):492–505.CrossRefPubMedGoogle Scholar
  16. 16.
    Angelova A, Garamus VM, Angelov B, Tian Z, Li Y, Zou A. Advances in structural design of lipid-based nanoparticle carriers for delivery of macromolecular drugs, phytochemicals and anti-tumor agents. Adv Colloid Interf Sci. 2017;249:331–45.CrossRefGoogle Scholar
  17. 17.
    Angelova A, Angelov B, Drechsler M, Lesieur S. Neurotrophin delivery using nanotechnology. Drug Discov Today. 2013;18(23):1263–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Chen Y, Angelova A, Angelov B, Drechsler M, Garamus VM, Willumeit-Romer R, et al. Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. J Mater Chem B. 2015;3(39):7734–44.CrossRefGoogle Scholar
  19. 19.
    Zerkoune L, Lesieur S, Putaux J-L, Choisnard L, Geze A, Wouessidjewe D, et al. Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. Soft Matter. 2016;12(36):7539–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery. 2004;11(3):169–83.CrossRefPubMedGoogle Scholar
  21. 21.
    El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 2006;239(1):129–35.CrossRefPubMedGoogle Scholar
  22. 22.
    Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc. 1951;11(0):55–75.CrossRefGoogle Scholar
  23. 23.
    Che E, Wan L, Zhang Y, Zhao Q, Han X, Li J, et al. Development of phosphonate-terminated magnetic mesoporous silica nanoparticles for pH-controlled release of doxorubicin and improved tumor accumulation. Asian J Pharm Sci. 2014;9(6):317–23.CrossRefGoogle Scholar
  24. 24.
    Mahou R, Wandrey C. Versatile route to synthesize heterobifunctional poly (ethylene glycol) of variable functionality for subsequent pegylation. Polymers. 2012;4(1):561–89.CrossRefGoogle Scholar
  25. 25.
    Shenoy D, Fu W, Li J, Crasto C, Jones G, DiMarzio C, et al. Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomedicine. 2006;1(1):51–8.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Woghiren C, Sharma B, Stein S. Protected thiol-polyethylene glycol: a new activated polymer for reversible protein modification. Bioconjug Chem. 1993;4(5):314–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Napoli A, Tirelli N, Kilcher G, Hubbell A. New synthetic methodologies for amphiphilic multiblock copolymers of ethylene glycol and propylene sulfide. Macromolecules. 2001;34(26):8913–7.CrossRefGoogle Scholar
  28. 28.
    Volcker N, Klee D, Hanna M, Hocker H, Bou JJ, Ilarduya Ad, et al. Synthesis of heterotelechelic poly (ethylene glycol) s and their characterization by MALDI-TOF-MS. Macromol Chem Phys 1999;200(6):1363–1373.Google Scholar
  29. 29.
    Bogdanov AA. Graft-copolymer stabilized metal nanoparticles. US patent. 2015;Google Scholar
  30. 30.
    Moldt T, Brete D, Przyrembel D, Das S, Goldman JR, Kundu PK, et al. Tailoring the properties of surface-immobilized Azobenzenes by monolayer dilution and surface curvature. Langmuir. 2015;31(3):1048–57.CrossRefPubMedGoogle Scholar
  31. 31.
    Overberger C, O'shaughnessy M, Shalit H. The preparation of some aliphatic azo nitriles and their decomposition in solution. J Am Chem Soc. 1949;71(8):2661–6.CrossRefGoogle Scholar
  32. 32.
    Herrwerth S, Rosendahl T, Feng C, Fick J, Eck W, Himmelhaus M, et al. Covalent coupling of antibodies to self-assembled monolayers of Carboxy-functionalized poly(ethylene glycol): protein resistance and specific binding of biomolecules. Langmuir. 2003;19(5):1880–7.CrossRefGoogle Scholar
  33. 33.
    Zayed G, Tessmar JK. Heterobifunctional poly (ethylene glycol) derivatives for the surface modification of gold nanoparticles toward bone mineral targeting. Macromol Biosci. 2012;12(8):1124–36.CrossRefPubMedGoogle Scholar
  34. 34.
    Prime KL, Whitesides GM. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc. 1993;115(23):10714–21.CrossRefGoogle Scholar
  35. 35.
    Li JJ. Williamson ether synthesis. Name Reactions: Springer; 2014. p. 628-.Google Scholar
  36. 36.
    Witt D, Klajn R, Barski P, Grzybowski BA. Applications, properties and synthesis of Ѡ-functionalized n-Alkanethiols and disulfides - the building blocks of self-assembled monolayers. Curr Org Chem. 2004;8(18):1763–97.CrossRefGoogle Scholar
  37. 37.
    Nudelman A, Bechor Y, Falb E, Fischer B, Wexler BA, Nudelman A. Acetyl chloride-methanol as a convenient reagent for: A) quantitative formation of amine hydrochlorides B) carboxylate Ester formation C) mild removal of N-t-Boc-protective group. Synth Commun. 1998;28(3):471–474.Google Scholar
  38. 38.
    Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Tyuftin AA, Solovieva SE, Murav’ev AA, Polyantsev FM, Latypov SK, Antipina IS. Thiacalix[4] arenes with terminal thiol groups at the lower rim: synthesis and structure. Russ Chem Bull. 2009;58(1):145–51.CrossRefGoogle Scholar
  40. 40.
    Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, et al. Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly (β-L-malic acid). Int J Mol Sci. 2012;13(9):11681–93.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in Cancer cells. ACS Nano. 2011;5(5):3679–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Etrych T, Mrkvan T, Chytil P, Koňák Č, Říhová B, Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J Appl Polym Sci. 2008;109(5):3050–61.CrossRefGoogle Scholar
  43. 43.
    Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature. 1973;241(105):20–2.Google Scholar
  44. 44.
    Madhusudhan A, Reddy GB, Venkatesham M, Veerabhadram G, Kumar DA, Natarajan S, et al. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped with carboxymethyl chitosan. Int J Mol Sci. 2014;15(5):8216–34.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gu Y-J, Cheng J, Man CW-Y, Wong W-T, Cheng SH. Gold-doxorubicin nanoconjugates for overcoming multidrug resistance. Nanomedicine. 2012;8(2):204–11.CrossRefPubMedGoogle Scholar
  46. 46.
    Corbierre MK, Cameron NS, Lennox RB. Polymer-stabilized gold nanoparticles with high grafting densities. Langmuir. 2004;20(7):2867–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Vigevani A, Doxorubicin WMJ. Doxorubicin. In: Klaus F, editor. Analytical profiles of drug substances. Volume 9: academic press; 1981. p. 245–74.CrossRefGoogle Scholar
  48. 48.
    Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao D, et al. Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B. 2002;106(28):7005–12.CrossRefGoogle Scholar
  49. 49.
    Chah S, Hammond MR, Zare RN. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol. 12(3):323–8.Google Scholar
  50. 50.
    Burns C, Spendel WU, Puckett S, Pacey GE. Solution ionic strength effect on gold nanoparticle solution color transition. Talanta. 2006;69(4):873–6.CrossRefPubMedGoogle Scholar
  51. 51.
    Nam J, Won N, Jin H, Chung H, Kim S. pH-induced aggregation of gold nanoparticles for Photothermal Cancer therapy. J Am Chem Soc. 2009;131(38):13639–45.CrossRefPubMedGoogle Scholar
  52. 52.
    Aryal S, RB KC, Bhattarai N, Kim CK, Kim HY. Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J Colloid Interface Sci. 2006;299(1):191–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Wang G, Sun W. Optical limiting of gold nanoparticle aggregates induced by electrolytes. J Phys Chem B. 2006;110(42):20901–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Takae S, Akiyama Y, Otsuka H, Nakamura T, Nagasaki Y, Kataoka K. Ligand density effect on Biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules. 2005;6(2):818–24.CrossRefPubMedGoogle Scholar
  55. 55.
    Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Chavanpatil MD, Khdair A, Patil Y, Handa H, Mao G, Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs. J Pharm Sci. 2007;96(12):3379–89.CrossRefPubMedGoogle Scholar
  57. 57.
    Zayed G, Tessmar J, Gopferich A. Development of colloids for cell and tissue targeting: bisphosphonate-functionalized gold nanoparticles for the investigation of bone targeting. In: phD; 2010.Google Scholar
  58. 58.
    Miyamoto D, Oishi M, Kojima K, Yoshimoto K, Nagasaki Y. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine. Langmuir. 2008;24(9):5010–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Lu D, Wen X, Liang J, Gu Z, Zhang X, Fan Y. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res B Appl Biomater. 2009;89B(1):177–83.CrossRefGoogle Scholar
  60. 60.
    Sun T-M, Wang Y-C, Wang F, Du J-Z, Mao C-Q, Sun C-Y, et al. Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials. 2014;35(2):836–45.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, et al. Mesoporous silica-coated gold Nanorods as a light-mediated multifunctional Theranostic platform for Cancer treatment. Adv Mater. 2012;24(11):1418–23.CrossRefPubMedGoogle Scholar
  62. 62.
    François A, Laroche A, Pinaud N, Salmon L, Ruiz J, Robert J, et al. Encapsulation of docetaxel into PEGylated gold nanoparticles for vectorization to Cancer cells. ChemMedChem. 2011;6(11):2003–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gamal M. Zayed
    • 1
    • 2
  • Islam Kamal
    • 3
  • Wael A. Abdelhafez
    • 1
  • Fahd M. Alsharif
    • 1
  • Mohamed A. Amin
    • 4
  • Montaser Sh. A. Shaykoon
    • 5
  • Hatem A. Sarhan
    • 6
  • Ahmed M. Abdelsalam
    • 1
  1. 1.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyAl-Azhar UniversityAssiutEgypt
  2. 2.Al-Azhar Centre of Nanosceinecs and Applications (ACNA)AssiutEgypt
  3. 3.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyPort Said UniversityPort FouadEgypt
  4. 4.Department of PharmaceuticsQassim UniversityQassimKingdom of Saudi Arabia
  5. 5.Department of Pharmaceutical ChemistryAl-Azhar UniversityAssiutEgypt
  6. 6.Department of Pharmaceutics, Faculty of PharmacyMinia UniversityMiniaEgypt

Personalised recommendations