Skip to main content

Advertisement

Log in

Blood-to-Retina Transport of Fluorescence-Labeled Verapamil at the Blood-Retinal Barrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the blood-to-retina verapamil transport at the blood-retinal barrier (BRB).

Methods

EverFluor FL Verapamil (EFV) was adopted as the fluorescent probe of verapamil, and its transport across the BRB was investigated with common carotid artery infusion in rats. EFV transport at the inner and outer BRB was investigated with TR-iBRB2 cells and RPE-J cells, respectively.

Results

The signal of EFV was detected in the retinal tissue during the weak signal of cell impermeable compound. In TR-iBRB2 cells, the localization of EFV differed from that of LysoTracker® Red, a lysosomotropic agent, and was not altered by acute treatment with NH4Cl. In RPE-J cells, the punctate distribution of EFV was partially observed, and this was reduced by acute treatment with NH4Cl. EFV uptake by TR-iBRB2 cells was temperature-dependent and membrane potential- and pH-independent, and was significantly reduced by NH4Cl treatment during no significant effect obtained by different extracellular pH and V-ATPase inhibitor. The EFV uptake by TR-iBRB2 cells was inhibited by cationic drugs, and inhibited by verapamil in a concentration-dependent manner with an IC50 of 98.0 μM.

Conclusions

Our findings provide visual evidence to support the significance of carrier-mediated transport in the blood-to-retina verapamil transport at the BRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABCB1:

ATP-biding cassette transporter subfamily B member 1

ABCC1:

ATP-biding cassette transporter subfamily C member 1

ABCC4:

ATP-biding cassette transporter subfamily C member 4

ABCG2:

ATP-biding cassette transporter subfamily G member 2

ARVO:

Association for Research in Vision and Ophthalmology

BCRP:

Breast cancer resistance protein

BRB:

Blood-retinal barrier

CH:

Choroid

C/M ratio:

Cell-to-medium ratio

CNG:

Cyclic nucleotide-gated

DAPI:

4′,6-Diamidino-2-phenylindole

ECF:

Extracellular fluid

EFV:

EverFluor FL Verapamil (BODIPY® FL Verapamil)

FCCP:

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

FI ratio:

Fluorescence intensity ratio

GCL:

Ganglion cell layer

IC50 :

50% Inhibitory concentration

ILM:

Inner limiting membrane

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

Km :

Michaelis constant

LTR:

LysoTracker® Red

MDR1:

Multi drug resistance 1

MPP+ :

1-Methyl-4-phenylpyridinium

MRP1:

Multi drug resistance-related protein 1

MRP4:

Multi drug resistance-related protein 4

Oat3:

Organic anion transporter 3

Oatp1a4:

Organic anion transporting polypeptide 1a4

OLM:

Outer limiting membrane

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

PAH:

p-Aminohippuric acid

PBS:

Phosphate-buffered saline

P-gp:

P-glycoprotein

POS:

Photoreceptor outer segment

Rho-D:

Rhodamine B isothiocyanate-dextran

RPE:

Retinal pigment epithelium

RUI:

Retinal uptake index

SLC:

Solute carrier

SLCO:

Solute carrier organic anion

TEA:

Tetraethylammonium

V-ATPase:

Vacuolar-type H+-ATPase

References

  1. Chao HM, Chidlow G, Melena J, Wood JP, Osborne NN. An investigation into the potential mechanisms underlying the neuroprotective effect of clonidine in the retina. Brain Res. 2000;877:47–57.

    Article  CAS  PubMed  Google Scholar 

  2. Ristori C, Filippi L, Dal Monte M, Martini D, Cammalleri M, Fortunato P, et al. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade. Invest Ophthalmol Vis Sci. 2011;52:155–70.

    Article  CAS  PubMed  Google Scholar 

  3. Hosoya K, Tomi M, Tachikawa M. Strategies for therapy of retinal diseases using systemic drug delivery: relevance of transporters at the blood-retinal barrier. Expert Opin Drug Deliv. 2011;8:1571–87.

    Article  CAS  PubMed  Google Scholar 

  4. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.

    Article  CAS  PubMed  Google Scholar 

  5. Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994;340:566–76.

    Article  CAS  PubMed  Google Scholar 

  6. Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Ueda M, Yanai N, et al. Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res. 2001;72:163–72.

    Article  CAS  PubMed  Google Scholar 

  7. Hosoya K, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28:1–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kubo Y, Obata A, Akanuma S, Hosoya K. Impact of cationic amino acid transporter 1 on blood-retinal barrier transport of L-ornithine. Invest Ophthalmol Vis Sci. 2015;56:5925–32.

    Article  CAS  PubMed  Google Scholar 

  9. Kubo Y, Yahata S, Miki S, Akanuma SI, Hosoya K. Blood-to-retina transport of riboflavin via RFVTs at the inner blood-retinal barrier. Drug Metab Pharmacokinet. 2017;32:92–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kubo Y, Akanuma S, Hosoya K. Influx transport of cationic drug at the blood-retinal barrier: impact on the retinal delivery of neuroprotectants. Biol Pharm Bull. 2017;40:1139–45.

    Article  CAS  PubMed  Google Scholar 

  11. Hosoya K, Yamamoto A, Akanuma S, Tachikawa M. Lipophilicity and transporter influence on blood-retinal barrier permeability: a comparison with blood-brain barrier permeability. Pharm Res. 2010;27:2715–24.

    Article  CAS  PubMed  Google Scholar 

  12. Kubo Y, Fukui E, Akanuma S, Tachikawa M, Hosoya K. Application of membrane permeability evaluated in in vitro analyses to estimate blood-retinal barrier permeability. J Pharm Sci. 2012;101:2596–605.

    Article  CAS  PubMed  Google Scholar 

  13. Kubo Y, Kusagawa Y, Tachikawa M, Akanuma S, Hosoya K. Involvement of a novel organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm Res. 2013;30:847–56.

    Article  CAS  PubMed  Google Scholar 

  14. Fujii S, Setoguchi C, Kawazu K, Hosoya K. Impact of P-glycoprotein on blood-retinal barrier permeability: comparison of blood-aqueous humor and blood-brain barrier using mdr1a knockout rats. Invest Ophthalmol Vis Sci. 2014;55:4650–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kubo Y, Shimizu Y, Kusagawa Y, Akanuma S, Hosoya K. Propranolol transport across the inner blood-retinal barrier: potential involvement of a novel organic cation transporter. J Pharm Sci. 2013;102:3332–42.

    Article  CAS  PubMed  Google Scholar 

  16. Kubo Y, Tsuchiyama A, Shimizu Y, Akanuma S, Hosoya K. Involvement of carrier-mediated transport in the retinal uptake of clonidine at the inner blood-retinal barrier. Mol Pharm. 2014;11:3747–53.

    Article  CAS  PubMed  Google Scholar 

  17. Tega Y, Kubo Y, Yuzurihara C, Akanuma S, Hosoya K. Carrier-mediated transport of nicotine across the inner blood-retinal barrier: involvement of a novel organic cation transporter driven by an outward H(+) gradient. J Pharm Sci. 2015;104:3069–75.

    Article  CAS  PubMed  Google Scholar 

  18. Chapy H, Saubaméa B, Tournier N, Bourasset F, Behar-Cohen F, Declèves X, et al. Blood-brain and retinal barriers show dissimilar ABC transporter impacts and concealed effect of P-glycoprotein on a novel verapamil influx carrier. Br J Pharmacol. 2016;173:497–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974;23:2495–531.

    Article  PubMed  Google Scholar 

  20. Gong Y, Zhao Z, McConn DJ, Beaudet B, Tallman M, Speake JD, et al. Lysosomes contribute to anomalous pharmacokinetic behavior of melanocortin-4 receptor agonists. Pharm Res. 2007;24:1138–44.

    Article  CAS  PubMed  Google Scholar 

  21. Nadanaciva S, Lu S, Gebhard DF, Jessen BA, Pennie WD, Will Y. A high content screening assay for identifying lysosomotropic compounds. Toxicol in Vitro. 2011;25:715–23.

    Article  CAS  PubMed  Google Scholar 

  22. Marceau F, Bawolak MT, Lodge R, Bouthillier J, Gagné-Henley A, Gaudreault RC, et al. Cation trapping by cellular acidic compartments: beyond the concept of lysosomotropic drugs. Toxicol Appl Pharmacol. 2012;259:1–12.

    Article  CAS  PubMed  Google Scholar 

  23. Duvvuri M, Gong Y, Chatterji D, Krise JP. Weak base permeability characteristics influence the intracellular sequestration site in the multidrug-resistant human leukemic cell line HL-60. J Biol Chem. 2004;279:32367–72.

    Article  CAS  PubMed  Google Scholar 

  24. Kazmi F, Hensley T, Pope C, Funk RS, Loewen GJ, Buckley DB, et al. Lysosomal sequestration (trapping) of lipophilic amine (cationic amphiphilic) drugs in immortalized human hepatocytes (Fa2N-4 cells). Drug Metab Dispos. 2013;41:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohkuma S, Moriyama Y, Takano T. Identification and characterization of a proton pump on lysosomes by fluorescein-isothiocyanate-dextran fluorescence. Proc Natl Acad Sci U S A. 1982;79:2758–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshimori T, Yamamoto A, Moriyama Y, Futai M, Tashiro Y. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991;266:17707–12.

    CAS  PubMed  Google Scholar 

  27. Lemieux B, Percival MD, Falgueyret JP. Quantitation of the lysosomotropic character of cationic amphiphilic drugs using the fluorescent basic amine red DND-99. Anal Biochem. 2004;327:247–51.

    Article  CAS  PubMed  Google Scholar 

  28. Kubo Y, Seko N, Usui T, Akanuma S, Hosoya K. Lysosomal trapping is present in retinal capillary endothelial cells: insight into its influence on cationic drug transport at the inner blood-retinal barrier. Biol Pharm Bull. 2016;39:1319–24.

    Article  CAS  PubMed  Google Scholar 

  29. Crivellato E, Candussio L, Rosati AM, Bartoli-Klugmann F, Mallardi F, Decorti G. The fluorescent probe Bodipy-FL-verapamil is a substrate for both P-glycoprotein and multidrug resistance-related protein (MRP)-1. J Histochem Cytochem. 2002;50:731–4.

    Article  CAS  PubMed  Google Scholar 

  30. Troost J, Lindenmaier H, Haefeli WE, Weiss J. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol Pharmacol. 2004;66:1332–9.

    Article  CAS  PubMed  Google Scholar 

  31. Takasato Y, Rapoport SI, Smith QR. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am J Phys. 1984;247:H484–93.

    CAS  Google Scholar 

  32. Yoshida D, Todo H, Hasegawa T, Sugibayashi K. Effect of molecular weight on the dermatopharmacokinetics and systemic disposition of drugs after intracutaneous injection. Eur J Pharm Sci. 2008;35:5–11.

    Article  CAS  PubMed  Google Scholar 

  33. Egawa G, Nakamizo S, Natsuaki Y, Doi H, Miyachi Y, Kabashima K. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep. 2013;3:1932.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Puchowicz MA, Xu K, Magness D, Miller C, Lust WD, Kern TS, et al. Comparison of glucose influx and blood flow in retina and brain of diabetic rats. J Cereb Blood Flow Metab. 2004;24:449–57.

    Article  PubMed  Google Scholar 

  35. Nabi IR, Mathews AP, Cohen-Gould L, Gundersen D, Rodriguez-Boulan E. Immortalization of polarized rat retinal pigment epithelium. J Cell Sci. 1993;104:37–49.

    PubMed  Google Scholar 

  36. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T. A pharmacokinetic analysis program (MULTI) for microcomputer. Aust J Pharm. 1981;4:879–85.

    CAS  Google Scholar 

  37. Cook NJ, Molday LL, Reid D, Kaupp UB, Molday RS. The cGMP-gated channel of bovine rod photoreceptors is localized exclusively in the plasma membrane. J Biol Chem. 1989;264:6996–9.

    CAS  PubMed  Google Scholar 

  38. Frasson M, Sahel JA, Fabre M, Simonutti M, Dreyfus H, Picaud S. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med. 1999;5:1183–7.

    Article  CAS  PubMed  Google Scholar 

  39. Takano Y, Ohguro H, Dezawa M, Ishikawa H, Yamazaki H, Ohguro I, et al. Study of drug effects of calcium channel blockers on retinal degeneration of rd mouse. Biochem Biophys Res Commun. 2004;313:1015–22.

    Article  CAS  PubMed  Google Scholar 

  40. Bauer M, Karch R, Tournier N, Cisternino S, Wadsak W, Hacker M, et al. Assessment of P-glycoprotein transport activity at the human blood-retina barrier with (R)-11C-verapamil PET. J Nucl Med. 2017;58:678–81.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z, Uchida Y, Hirano S, Ando D, Kubo Y, Auriola S, et al. Inner blood-retinal barrier dominantly expresses breast cancer resistance protein: comparative quantitative targeted absolute proteomics study of CNS barriers in pig. Mol Pharm. 2017;14:3729–38.

    Article  CAS  PubMed  Google Scholar 

  42. Fujii S, Setoguchi C, Kawazu K, Hosoya K. Functional characterization of carrier-mediated transport of pravastatin across the blood-retinal barrier in rats. Drug Metab Dispos. 2015;43:1956–9.

    Article  PubMed  Google Scholar 

  43. Katayama K, Ohshima Y, Tomi M, Hosoya K. Application of microdialysis to evaluate the efflux transport of estradiol 17-beta glucuronide across the rat blood-retinal barrier. J Neurosci Methods. 2006;156:249–56.

    Article  CAS  PubMed  Google Scholar 

  44. Hosoya K, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, Terasaki T, et al. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther. 2009;329:87–93.

    Article  CAS  PubMed  Google Scholar 

  45. Akanuma S, Hirose S, Tachikawa M, Hosoya K. Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat blood-retinal barrier. Fluids Barriers CNS. 2013;10:29.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Han YH, Sweet DH, Hu DN, Pritchard JB. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther. 2001;296:450–7.

    CAS  PubMed  Google Scholar 

  47. Lelong IH, Guzikowski AP, Haugland RP, Pastan I, Gottesman MM, Willingham MC. Fluorescent verapamil derivative for monitoring activity of the multidrug transporter. Mol Pharmacol. 1991;40:490–4.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

The present study was financially supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number JP16H05110 and JP17K08409), JSPS Core-to-Core Program (B. Asia-Africa Science Platforms), and Research Grants from the Smoking Research Foundation and the Takeda Science Foundation. The authors thank Miss Reina Makino for her technical support involving confocal microscopy. The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Hosoya.

Electronic supplementary material

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubo, Y., Nakazawa, A., Akanuma, Si. et al. Blood-to-Retina Transport of Fluorescence-Labeled Verapamil at the Blood-Retinal Barrier. Pharm Res 35, 93 (2018). https://doi.org/10.1007/s11095-018-2384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2384-7

Key words

Navigation