Preparation of Modified Konjac Glucomannan Nanoparticles and their Application as Vaccine Adjuvants to Promote Ovalbumin-Induced Immune Response in Mice

  • Na Chen
  • Pei Zhu
  • Ting Du
  • Kai Han
  • Dang Wang
  • Jianfeng Ye
  • Shaobo Xiao
  • Xiaozhou Ye
  • Yun Wang
Research Paper



Herein, we reported a facile strategy for synthesis of two types of modified konjac glucomannan nanoparticles (NPs). The goal of this project was to explore the potential of the NPs as vaccine adjuvants.


Firstly, anionic carboxymethylated konjac glucomannan (CKGM) and cationic quaternized konjac glucomannan (QKGM) were synthesized by chemical modification of konjac glucomannan (KGM). Subsequently, two types of NPs, CKGM/QKGM and sodium tripolyphosphate (TPP)/QKGM, were prepared through polyelectrolyte complex method and ionic cross-linking method, respectively. The thus-synthesized NPs were then loaded with ovalbumin (OVA) to further evaluate the effect of NPs on immune response in mice.


The encapsulation efficiency of OVA for CKGM/QKGM/OVA and TPP/QKGM/OVA NPs could be 49.2% and 67.7%, respectively, while the drug loading capacity could reach 10.9% and 60%. The NPs showed irregular spherical shape and exhibited good sustained-release properties. In vitro cytotoxicity assay revealed that both the blank and OVA-loaded NPs were not toxic to cells. The OVA-specific IgG, splenocytes proliferation and cytokine levels indicated that the OVA-induced humoral and cellular immune responses were up-regulated by OVA-loaded NPs. What’s more, CKGM/QKGM/OVA NPs elicited both higher IL-2 and IFN-γ production, while TPP/QKGM/OVA NPs elicited both higher IL-4 and IL-10 production.


These results suggest that TPP/QKGM and CKGM/QKGM NPs are promising to be used as vaccine adjuvants. The TPP/QKGM/OVA NPs could induce stronger humoral immune response, while CKGM/QKGM/OVA NPs could enhance the cellular immune response more effectively.

Key words

chemical modification immune response konjac glucomannan nanoparticles vaccine adjuvants 



Acid-hydrolysed konjac glucomannan


Cell counting kit-8


Carboxymethylated konjac glucomannan


Dulbecco’s modified Eagle’s medium


Encapsulation efficiency


Enzyme linked immunosorbent assay


Fetal bovine serum


Fourier transform infrared






Konjac glucomannan


Loading capacity


3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide


Nuclear magnetic resonance




Optical density




Phosphate buffer saline


Quaternized konjac glucomannan


Roswell Park Memorial Institute


Room temperature


Standard error mean


Stimulation index


Transmission electron microscope


Sodium tripolyphosphate


3, 3′, 5, 5’-Tetramethylbenzidine


Acknowledgments and Disclosures

This work was financially supported by the Da BeiNong Group Promoted Project for Young Scholar of HZAU (Grant No. 2017DBN010), the open funds of the State Key Laboratory of Agricultural Microbiology (Grant No. AMLKF201507), the National Natural Science Foundation of China (Grant No. 21503085), and the Natural Science Foundation of Hubei Province (Grant No. 2015CFB233).


  1. 1.
    Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;131:509–17.CrossRefGoogle Scholar
  2. 2.
    Ulmer JB, Valley U, Rappuoli R. Vaccine manufacturing: challenges and solutions. Nat Biotechnol. 2006;24:1377–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Lima KM, dos Santos SA, Rodrigues JM, Silva CL. Vaccine adjuvant: it makes the difference. Vaccine. 2004;22:2374–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol. 2015;34:217–24.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmed SS, Plotkin SA, Black S, Coffman RL. Assessing the safety of adjuvanted vaccines. Sci Transl Med. 2011;3:93rv2.CrossRefPubMedGoogle Scholar
  6. 6.
    Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomateri Sci. 2016;4:785–802.CrossRefGoogle Scholar
  7. 7.
    Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32:327–37.CrossRefPubMedGoogle Scholar
  8. 8.
    Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31:2563–82.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA. Minireview: nanoparticles and the immune system. Endocrinology. 2010;151:458–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res. 2013;30:325–41.CrossRefPubMedGoogle Scholar
  11. 11.
    Alberto J, Salazar G, Gonzalez-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines. 2015;14:1197–211.CrossRefGoogle Scholar
  12. 12.
    Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine. 2014;9:2657–69.CrossRefPubMedGoogle Scholar
  13. 13.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.CrossRefPubMedGoogle Scholar
  14. 14.
    Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Dietary Fibre. 2015;5:31–61.CrossRefGoogle Scholar
  15. 15.
    Sun HX, Wang H, Xu HS, Ni Y. Novel polysaccharide adjuvant from the roots of actinidia eriantha with dual Th1 and Th2 potentiating activity. Vaccine. 2009;27:3984–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Tester RF, Al-Ghazzewi FH. Mannans and health, with a special focus on glucomannans. Food Res Int. 2013;50:384–91.CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Xie B, Gan X. Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym. 2005;60:27–31.CrossRefGoogle Scholar
  18. 18.
    Bo S, Muschin T, Kanamoto T, Nakashima H, Yoshida T. Sulfation and biological activities of konjac glucomannan. Carbohydr Polym. 2013;94:899–903.CrossRefPubMedGoogle Scholar
  19. 19.
    Alonso-Sande M, Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm. 2009;72:453–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Chua M, Baldwin TC, Hocking TJ, Chan K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J Ethnopharmacol. 2010;128:268–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Behera SS, Ray RC. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol. 2016;92:942–56.CrossRefPubMedGoogle Scholar
  22. 22.
    Tian D, Wu X, Liu C, Xie HQ. Synthesis and flocculation behavior of cationic konjac glucomannan containing quaternary ammonium substituents. J Appl Polym Sci. 2010;115:2368–74.CrossRefGoogle Scholar
  23. 23.
    Du J, Dai J, Liu JL, Dankovich T. Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React Funct Polym. 2006;66:1055–61.CrossRefGoogle Scholar
  24. 24.
    Shi C, Zhu P, Chen N, Ye X, Wang Y, Xiao S. Preparation and sustainable release of modified konjac glucomannan/chitosan nanospheres. Int J Biol Macromol. 2016;91:609–14.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang J, Liu C, Shuai Y, Cui X, Nie L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B: Biointerfaces. 2014;113:223–29.CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng LH, Abd Karim A, Seow CC. Effects of acid modification on physical properties of konjac glucomannan (KGM) films. Food Chem. 2007;103:994–1002.CrossRefGoogle Scholar
  27. 27.
    Kobayashi S, Tsujihata S, Hibi N, Tsukamoto Y. Preparation and rheological characterization of carboxymethyl konjac glucomannan. Food Hydrocoll. 2002;16:289–94.CrossRefGoogle Scholar
  28. 28.
    Wu HY, Qian H, Yan XD. Optimization of the carboxymethyl process of konjac glucomannan. Food Ferment Ind. 2006;32:75–8.Google Scholar
  29. 29.
    Xu C, Lu CH, Ding MT. Synthesis and structure characterization of the quaternaryammonium salt of chitosan. J Funct Polym. 1997;10:51–5.Google Scholar
  30. 30.
    Dai C, Kang H, Yang W, Sun J, Liu C, Cheng G, et al. O-2′-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr Polym. 2015;130:280–89.CrossRefPubMedGoogle Scholar
  31. 31.
    Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci. 2014;62:243–50.CrossRefPubMedGoogle Scholar
  32. 32.
    Xiong W, Li L, Wang Y, Yu Y, Wang S, Gao Y, et al. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride. Int J Pharm. 2016;511:267–75.CrossRefPubMedGoogle Scholar
  33. 33.
    Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces. 2007;59:24–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhao N, Wang X, Zhang Y, Gu Q, Huang F, Zheng W, et al. Gestational zinc deficiency impairs humoral and cellular immune responses to hepatitis B vaccination in offspring mice. PLoS One. 2013;8:e73461.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yu H, Huang Y, Ying H, Xiao C. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydr Polym. 2007;69:29–40.CrossRefGoogle Scholar
  36. 36.
    Xia B, Ha W, Meng XW, Govender T, Peng SL, Ding LS, et al. Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydr Polym. 2010;79:648–54.CrossRefGoogle Scholar
  37. 37.
    Niu C, Wu W, Wang Z, Shi X, Qu P. Preparation and characterization of cationic Konjac Glucomannan. Fine Chemicals. 2006;23:188–91.Google Scholar
  38. 38.
    Yuan L, Wu L, Chen J, Wu Q, Hu S. Paclitaxel acts as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Vaccine. 2010;28:4402–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Obst R, van Santen HM, Melamed R, Kamphorst AO, Benoist C, Mathis D. Sustained antigen presentation can promote an immunogenic T cell response, like dendritic cell activation. Proc Natl Acad Sci U S A. 2007;104:15460–65.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Blair DA, Turner DL, Bose TO, Pham QM, Bouchard KR, Williams KJ, et al. Duration of antigen availability influences the expansion and memory differentiation of T cells. J Immunol. 2011;187:2310–21.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J, et al. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials. 2014;35:6086–97.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu L, Ma P, Wang H, Zhang C, Sun H, Wang C, et al. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J Control Release. 2016;225:230–39.CrossRefPubMedGoogle Scholar
  43. 43.
    Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220:141–48.CrossRefPubMedGoogle Scholar
  44. 44.
    Cao Y, Ma Y, Zhang M, Wang H, Tu X, Shen H, et al. Ultrasmall graphene oxide supported gold nanoparticles as adjuvants improve humoral and cellular immunity in mice. Adv Funct Mater. 2014;24:6963–71.CrossRefGoogle Scholar
  45. 45.
    Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Immunity. 2010;33:451–63.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a Nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interfaces. 2016;8:11969–79.CrossRefPubMedGoogle Scholar
  47. 47.
    Fan Y, Ma X, Ma L, Zhang J, Zhang W, Song X. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus. Carbohydr Polym. 2016;135:110–20.CrossRefPubMedGoogle Scholar
  48. 48.
    Su X, Pei Z, Hu S. Ginsenoside re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol. 2014;20:283–89.CrossRefPubMedGoogle Scholar
  49. 49.
    Sun HX. Adjuvant effect of Achyranthes bidentata saponins on specific antibody and cellular response to ovalbumin in mice. Vaccine. 2006;24:3432–39.CrossRefPubMedGoogle Scholar
  50. 50.
    Toda T, Yoshino S. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol. 2016;29:408–20.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Feria-Romero IA, Chavez-Rueda K, Orozco-Suarez S, Blanco-Favela F, Calzada-Bermejo F, Chavez-Sanchez L, et al. Intranasal anti-rabies DNA immunization promotes a Th1-related cytokine stimulation associated with plasmid survival time. Arch Med Res. 2011;42:563–71.CrossRefPubMedGoogle Scholar
  52. 52.
    Fessler MB, Keijzer C, Slütter B, van der Zee R, Jiskoot W, van Eden W, et al. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS One. 2011;6:e26684.CrossRefGoogle Scholar
  53. 53.
    Slutter B, Jiskoot W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J Control Release. 2010;148:117–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Agricultural Microbiology, College of ScienceHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations