Skip to main content
Log in

Preparation of Modified Konjac Glucomannan Nanoparticles and their Application as Vaccine Adjuvants to Promote Ovalbumin-Induced Immune Response in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Herein, we reported a facile strategy for synthesis of two types of modified konjac glucomannan nanoparticles (NPs). The goal of this project was to explore the potential of the NPs as vaccine adjuvants.

Methods

Firstly, anionic carboxymethylated konjac glucomannan (CKGM) and cationic quaternized konjac glucomannan (QKGM) were synthesized by chemical modification of konjac glucomannan (KGM). Subsequently, two types of NPs, CKGM/QKGM and sodium tripolyphosphate (TPP)/QKGM, were prepared through polyelectrolyte complex method and ionic cross-linking method, respectively. The thus-synthesized NPs were then loaded with ovalbumin (OVA) to further evaluate the effect of NPs on immune response in mice.

Results

The encapsulation efficiency of OVA for CKGM/QKGM/OVA and TPP/QKGM/OVA NPs could be 49.2% and 67.7%, respectively, while the drug loading capacity could reach 10.9% and 60%. The NPs showed irregular spherical shape and exhibited good sustained-release properties. In vitro cytotoxicity assay revealed that both the blank and OVA-loaded NPs were not toxic to cells. The OVA-specific IgG, splenocytes proliferation and cytokine levels indicated that the OVA-induced humoral and cellular immune responses were up-regulated by OVA-loaded NPs. What’s more, CKGM/QKGM/OVA NPs elicited both higher IL-2 and IFN-γ production, while TPP/QKGM/OVA NPs elicited both higher IL-4 and IL-10 production.

Conclusions

These results suggest that TPP/QKGM and CKGM/QKGM NPs are promising to be used as vaccine adjuvants. The TPP/QKGM/OVA NPs could induce stronger humoral immune response, while CKGM/QKGM/OVA NPs could enhance the cellular immune response more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AHKGM:

Acid-hydrolysed konjac glucomannan

CCK-8:

Cell counting kit-8

CKGM:

Carboxymethylated konjac glucomannan

DMEM:

Dulbecco’s modified Eagle’s medium

EE:

Encapsulation efficiency

ELISA:

Enzyme linked immunosorbent assay

FBS:

Fetal bovine serum

FT-IR:

Fourier transform infrared

IFN:

Interferon

IL:

Interleukin

KGM:

Konjac glucomannan

LC:

Loading capacity

MTT:

3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide

NMR:

Nuclear magnetic resonance

NPs:

Nanoparticles

OD:

Optical density

OVA:

Ovalbumin

PBS:

Phosphate buffer saline

QKGM:

Quaternized konjac glucomannan

RPMI:

Roswell Park Memorial Institute

RT:

Room temperature

SEM:

Standard error mean

SI:

Stimulation index

TEM:

Transmission electron microscope

TPP:

Sodium tripolyphosphate

TMB:

3, 3′, 5, 5’-Tetramethylbenzidine

References

  1. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011;131:509–17.

    Article  Google Scholar 

  2. Ulmer JB, Valley U, Rappuoli R. Vaccine manufacturing: challenges and solutions. Nat Biotechnol. 2006;24:1377–83.

    Article  CAS  PubMed  Google Scholar 

  3. Lima KM, dos Santos SA, Rodrigues JM, Silva CL. Vaccine adjuvant: it makes the difference. Vaccine. 2004;22:2374–9.

    Article  CAS  PubMed  Google Scholar 

  4. Smith JD, Morton LD, Ulery BD. Nanoparticles as synthetic vaccines. Curr Opin Biotechnol. 2015;34:217–24.

    Article  CAS  PubMed  Google Scholar 

  5. Ahmed SS, Plotkin SA, Black S, Coffman RL. Assessing the safety of adjuvanted vaccines. Sci Transl Med. 2011;3:93rv2.

    Article  CAS  PubMed  Google Scholar 

  6. Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomateri Sci. 2016;4:785–802.

    Article  CAS  Google Scholar 

  7. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32:327–37.

    Article  PubMed  Google Scholar 

  8. Sahdev P, Ochyl LJ, Moon JJ. Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. 2014;31:2563–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA. Minireview: nanoparticles and the immune system. Endocrinology. 2010;151:458–65.

    Article  CAS  PubMed  Google Scholar 

  10. Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res. 2013;30:325–41.

    Article  CAS  PubMed  Google Scholar 

  11. Alberto J, Salazar G, Gonzalez-Ortega O, Rosales-Mendoza S. Gold nanoparticles and vaccine development. Expert Rev Vaccines. 2015;14:1197–211.

    Article  Google Scholar 

  12. Skwarczynski M, Toth I. Recent advances in peptide-based subunit nanovaccines. Nanomedicine. 2014;9:2657–69.

    Article  CAS  PubMed  Google Scholar 

  13. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.

    Article  CAS  PubMed  Google Scholar 

  14. Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Dietary Fibre. 2015;5:31–61.

    Article  CAS  Google Scholar 

  15. Sun HX, Wang H, Xu HS, Ni Y. Novel polysaccharide adjuvant from the roots of actinidia eriantha with dual Th1 and Th2 potentiating activity. Vaccine. 2009;27:3984–91.

    Article  CAS  PubMed  Google Scholar 

  16. Tester RF, Al-Ghazzewi FH. Mannans and health, with a special focus on glucomannans. Food Res Int. 2013;50:384–91.

    Article  CAS  Google Scholar 

  17. Zhang Y, Xie B, Gan X. Advance in the applications of konjac glucomannan and its derivatives. Carbohydr Polym. 2005;60:27–31.

    Article  CAS  Google Scholar 

  18. Bo S, Muschin T, Kanamoto T, Nakashima H, Yoshida T. Sulfation and biological activities of konjac glucomannan. Carbohydr Polym. 2013;94:899–903.

    Article  CAS  PubMed  Google Scholar 

  19. Alonso-Sande M, Teijeiro-Osorio D, Remunan-Lopez C, Alonso MJ. Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm. 2009;72:453–62.

    Article  CAS  PubMed  Google Scholar 

  20. Chua M, Baldwin TC, Hocking TJ, Chan K. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. J Ethnopharmacol. 2010;128:268–78.

    Article  PubMed  Google Scholar 

  21. Behera SS, Ray RC. Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol. 2016;92:942–56.

    Article  CAS  PubMed  Google Scholar 

  22. Tian D, Wu X, Liu C, Xie HQ. Synthesis and flocculation behavior of cationic konjac glucomannan containing quaternary ammonium substituents. J Appl Polym Sci. 2010;115:2368–74.

    Article  CAS  Google Scholar 

  23. Du J, Dai J, Liu JL, Dankovich T. Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React Funct Polym. 2006;66:1055–61.

    Article  CAS  Google Scholar 

  24. Shi C, Zhu P, Chen N, Ye X, Wang Y, Xiao S. Preparation and sustainable release of modified konjac glucomannan/chitosan nanospheres. Int J Biol Macromol. 2016;91:609–14.

    Article  CAS  PubMed  Google Scholar 

  25. Wang J, Liu C, Shuai Y, Cui X, Nie L. Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B: Biointerfaces. 2014;113:223–29.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng LH, Abd Karim A, Seow CC. Effects of acid modification on physical properties of konjac glucomannan (KGM) films. Food Chem. 2007;103:994–1002.

    Article  CAS  Google Scholar 

  27. Kobayashi S, Tsujihata S, Hibi N, Tsukamoto Y. Preparation and rheological characterization of carboxymethyl konjac glucomannan. Food Hydrocoll. 2002;16:289–94.

    Article  CAS  Google Scholar 

  28. Wu HY, Qian H, Yan XD. Optimization of the carboxymethyl process of konjac glucomannan. Food Ferment Ind. 2006;32:75–8.

    Google Scholar 

  29. Xu C, Lu CH, Ding MT. Synthesis and structure characterization of the quaternaryammonium salt of chitosan. J Funct Polym. 1997;10:51–5.

    CAS  Google Scholar 

  30. Dai C, Kang H, Yang W, Sun J, Liu C, Cheng G, et al. O-2′-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr Polym. 2015;130:280–89.

    Article  CAS  PubMed  Google Scholar 

  31. Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci. 2014;62:243–50.

    Article  CAS  PubMed  Google Scholar 

  32. Xiong W, Li L, Wang Y, Yu Y, Wang S, Gao Y, et al. Design and evaluation of a novel potential carrier for a hydrophilic antitumor drug: Auricularia auricular polysaccharide-chitosan nanoparticles as a delivery system for doxorubicin hydrochloride. Int J Pharm. 2016;511:267–75.

    Article  CAS  PubMed  Google Scholar 

  33. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B: Biointerfaces. 2007;59:24–34.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao N, Wang X, Zhang Y, Gu Q, Huang F, Zheng W, et al. Gestational zinc deficiency impairs humoral and cellular immune responses to hepatitis B vaccination in offspring mice. PLoS One. 2013;8:e73461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yu H, Huang Y, Ying H, Xiao C. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydr Polym. 2007;69:29–40.

    Article  CAS  Google Scholar 

  36. Xia B, Ha W, Meng XW, Govender T, Peng SL, Ding LS, et al. Preparation and characterization of a poly(ethylene glycol) grafted carboxymethyl konjac glucomannan copolymer. Carbohydr Polym. 2010;79:648–54.

    Article  CAS  Google Scholar 

  37. Niu C, Wu W, Wang Z, Shi X, Qu P. Preparation and characterization of cationic Konjac Glucomannan. Fine Chemicals. 2006;23:188–91.

    CAS  Google Scholar 

  38. Yuan L, Wu L, Chen J, Wu Q, Hu S. Paclitaxel acts as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Vaccine. 2010;28:4402–10.

    Article  CAS  PubMed  Google Scholar 

  39. Obst R, van Santen HM, Melamed R, Kamphorst AO, Benoist C, Mathis D. Sustained antigen presentation can promote an immunogenic T cell response, like dendritic cell activation. Proc Natl Acad Sci U S A. 2007;104:15460–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blair DA, Turner DL, Bose TO, Pham QM, Bouchard KR, Williams KJ, et al. Duration of antigen availability influences the expansion and memory differentiation of T cells. J Immunol. 2011;187:2310–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang W, Wang L, Liu Y, Chen X, Liu Q, Jia J, et al. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials. 2014;35:6086–97.

    Article  CAS  PubMed  Google Scholar 

  42. Liu L, Ma P, Wang H, Zhang C, Sun H, Wang C, et al. Immune responses to vaccines delivered by encapsulation into and/or adsorption onto cationic lipid-PLGA hybrid nanoparticles. J Control Release. 2016;225:230–39.

    Article  CAS  PubMed  Google Scholar 

  43. Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release. 2015;220:141–48.

    Article  CAS  PubMed  Google Scholar 

  44. Cao Y, Ma Y, Zhang M, Wang H, Tu X, Shen H, et al. Ultrasmall graphene oxide supported gold nanoparticles as adjuvants improve humoral and cellular immunity in mice. Adv Funct Mater. 2014;24:6963–71.

    Article  CAS  Google Scholar 

  45. Sallusto F, Lanzavecchia A, Araki K, Ahmed R. From vaccines to memory and back. Immunity. 2010;33:451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a Nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interfaces. 2016;8:11969–79.

    Article  CAS  PubMed  Google Scholar 

  47. Fan Y, Ma X, Ma L, Zhang J, Zhang W, Song X. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus. Carbohydr Polym. 2016;135:110–20.

    Article  CAS  PubMed  Google Scholar 

  48. Su X, Pei Z, Hu S. Ginsenoside re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol. 2014;20:283–89.

    Article  CAS  PubMed  Google Scholar 

  49. Sun HX. Adjuvant effect of Achyranthes bidentata saponins on specific antibody and cellular response to ovalbumin in mice. Vaccine. 2006;24:3432–39.

    Article  CAS  PubMed  Google Scholar 

  50. Toda T, Yoshino S. Enhancement of ovalbumin-specific Th1, Th2, and Th17 immune responses by amorphous silica nanoparticles. Int J Immunopathol Pharmacol. 2016;29:408–20.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Feria-Romero IA, Chavez-Rueda K, Orozco-Suarez S, Blanco-Favela F, Calzada-Bermejo F, Chavez-Sanchez L, et al. Intranasal anti-rabies DNA immunization promotes a Th1-related cytokine stimulation associated with plasmid survival time. Arch Med Res. 2011;42:563–71.

    Article  CAS  PubMed  Google Scholar 

  52. Fessler MB, Keijzer C, Slütter B, van der Zee R, Jiskoot W, van Eden W, et al. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity. PLoS One. 2011;6:e26684.

    Article  Google Scholar 

  53. Slutter B, Jiskoot W. Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination. J Control Release. 2010;148:117–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was financially supported by the Da BeiNong Group Promoted Project for Young Scholar of HZAU (Grant No. 2017DBN010), the open funds of the State Key Laboratory of Agricultural Microbiology (Grant No. AMLKF201507), the National Natural Science Foundation of China (Grant No. 21503085), and the Natural Science Foundation of Hubei Province (Grant No. 2015CFB233).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobo Xiao or Xiaozhou Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Zhu, P., Du, T. et al. Preparation of Modified Konjac Glucomannan Nanoparticles and their Application as Vaccine Adjuvants to Promote Ovalbumin-Induced Immune Response in Mice. Pharm Res 35, 105 (2018). https://doi.org/10.1007/s11095-018-2381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2381-x

Key words

Navigation