Skip to main content

Advertisement

Log in

Tacrolimus Loaded PEG-Cholecalciferol Based Micelles for Treatment of Ocular Inflammation

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Poor corneal permeability, nasolacrimal drainage and requirement of chronic administration are major drawbacks of existing therapies for ocular inflammation. Hence, we designed topical micelles of PEG2000 conjugated with cholecalciferol (PEGCCF).

Methods

Integrin targeted tacrolimus loaded PEGCCF micelles (TTM) were prepared by solvent diffusion evaporation method and characterized for particle size, osmolality, encapsulation efficiency and drug loading. Therapeutic potential of TTM was evaluated in benzalkonium chloride induced ocular inflammation model in BALB/c mice. Corneal flourescein staining and histopathological analysis of corneal sections was performed.

Results

TTM had a particle size of 45.3 ± 5.3 nm, encapsulation efficiency (88.7 ± 0.9%w/w) and osmolality of 292–296 mOsmol/Kg. TTM significantly reduced the corneal fluorescence as compared to tacrolimus suspension (TACS). H&E staining showed that TTM could restore corneal epithelial thickness, reduce stromal edema (p < 0.05) and decrease number of inflammatory cells (p < 0.01) compared with TACS. Immunohistochemistry analysis demonstrated lower expression of Ki67 + ve cells (p < 0.05) and IL-6 throughout the cornea against TACS (p < 0.01) and the control (p < 0.001).

Conclusions

TTM is an innovative delivery system for improving ocular inflammation due to a) integrin targeting b) PEGCCF in the form of carrier and c) anti-inflammatory and synergistic effect (due to Pgp inhibition) with TAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Characterization of TTM.
Fig. 2: Representative slit-lamp captured fluorescein staining and quantitative analysis
Fig. 3: Assessment of corneal integrity through H&E staining of mouse cornea after different treatments and quantitative analysis
Fig. 4
Fig. 5: Immunohistochemistry of mouse eye for Ki67 after different treatments and quantitative analysis
Fig. 6: Immunohistochemistry of mouse eye for IL-6 after different treatments and quantitative analysis

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cells

BKC:

Benzalkonium chloride

CRP:

C-reactive protein

DCC:

Dicyclohexylcarbodiimide

DMAP:

4-dimethylaminopyridine

DSPE-PEG2000:

1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

HCEC:

Human corneal epithelial cells

IFN- γ:

Interferon-γ

IHC:

Immunohistochemistry

iOP:

Intraocular pressure

LC:

Langerhans cells

mPEG2000:

Polyethylene glycol methyl ether (average Mn~2000)

NFAT:

Nuclear factor of activated T cells

PDI:

Poly-dispersity index

PEG:

Polyethylene glycol

PEGCCF:

PEG2000 conjugated with cholecalciferol

Pgp:

P-glycoprotein

RGD:

Arg-Gly-Asp

SF:

Sodium fluorescein

TAC:

Tacrolimus

TACS:

Tacrolimus suspension

TEA:

Triethylamine

TNF-α:

Tumor necrosis factor

TTM:

Targeted tacrolimus loaded micelles

VD3:

Cholecalciferol

References

  1. Kymionis GD, Bouzoukis DI, Diakonis VF, Siganos C. Treatment of chronic dry eye: focus on cyclosporine. Clin Ophthalmol (Auckland, NZ). 2008;2(4):829.

    Article  CAS  Google Scholar 

  2. Thakur A, Xue M, Stapleton F, Lloyd A, Wakefield D, Willcox M. Balance of pro-and anti-inflammatory cytokines correlates with outcome of acute experimental Pseudomonas aeruginosa keratitis. Infect Immun. 2002;70(4):2187–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Wakefield D, Lloyd A. The role of cytokines in the pathogenesis of inflammatory eye disease. Cytokine. 1992;4(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  4. De Paiva CS, Corrales RM, Villarreal AL, Farley WJ, Li D-Q, Stern ME, et al. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res. 2006;83(3):526–35.

    Article  PubMed  CAS  Google Scholar 

  5. Isawi H, Dhaliwal DK. Corneal melting and perforation in Stevens Johnson syndrome following topical bromfenac use. J Cataract Refract Surg. 2007;33(9):1644–1646.

  6. Dua HS, Attre R. Treatment of post-operative inflammation following cataract surgery: a review. Eur Ophthal Rev. 2012;6(2):98–103.

    Article  Google Scholar 

  7. Dinning W. Steroids and the eye--indications and complications. Postgrad Med J. 1976;52(612):634–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Waris A, Nagpal G, Nagpal G, Akhtar N. Tacrolimus in ophthalmology. Indian J Clin Exp Ophthalmol. 2015;1(1):3–6.

    Google Scholar 

  9. Kheirkhah A, Zavareh M, Farzbod F, Mahbod M, Behrouz M. Topical 0.005% tacrolimus eye drop for refractory vernal keratoconjunctivitis. Eye. 2011;25(7):872.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Vichyanond P, Kosrirukvongs P. Use of cyclosporine A and tacrolimus in treatment of vernal keratoconjunctivitis. Curr Allergy Asthma Rep. 2013;13(3):308–14.

    Article  PubMed  CAS  Google Scholar 

  11. Park J-H, Joo C-K, Chung SK. Comparative study of tacrolimus and bevacizumab on corneal neovascularization in rabbits. Cornea. 2015;34(4):449–55.

    Article  PubMed  Google Scholar 

  12. Fukushima A, Ohashi Y, Ebihara N, Uchio E, Okamoto S, Kumagai N, et al. Therapeutic effects of 0.1% tacrolimus eye drops for refractory allergic ocular diseases with proliferative lesion or corneal involvement. Br J Ophthalmol. 2014; https://doi.org/10.1136/bjophthalmol-2013-304453.

  13. Patel P, Patel H, Panchal S, Mehta T. Formulation strategies for drug delivery of tacrolimus: an overview. Int J Pharm Investig. 2012;2(4):169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dey S, Patel J, Anand BS, Jain-Vakkalagadda B, Kaliki P, Pal D, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(7):2909–18.

    Article  PubMed  Google Scholar 

  15. Chang C, Bahadduri PM, Polli JE, Swaan PW, Ekins S. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab Dispos. 2006;34(12):1976–84.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson JA, Grande JP, Roche PC, Campbell RJ, Kumar R. Immuno-localization of the calcitriol receptor, calbinclin-d28k and the plasma membrane calcium pump in the human eye. Curr Eye Res. 1995;14(2):101–8.

    Article  PubMed  CAS  Google Scholar 

  17. Yin Z, Pintea V, Lin Y, Hammock BD, Watsky MA. Vitamin D enhances corneal epithelial barrier function. Invest Ophthalmol Vis Sci. 2011;52(10):7359–7364.

  18. Suzuki T, Sano Y, Kinoshita S. Effects of 1α, 25-dihydroxyvitamin D3 on Langerhans cell migration and corneal neovascularization in mice. Invest Ophthalmo Vis Sci. 2000;41(1):154–158.

  19. Dang S, Lu X, Zhou J, Bai L. Effects of 1alpha, 25-dihydroxyvitamin D3 on the acute immune rejection and corneal neovascularization in high-risk penetrating keratoplasty in rats. Di 1 jun yi da xue xue bao= Academic journal of the first medical college of PLA. 2004;24(8):892–6. 903

    PubMed  CAS  Google Scholar 

  20. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  21. Kasimova AO, Pavan GM, Danani A, Mondon K, Cristiani A, Scapozza L, et al. Validation of a novel molecular dynamics simulation approach for lipophilic drug incorporation into polymer micelles. J Phys Chem B. 2012;116(14):4338–45.

    Article  PubMed  CAS  Google Scholar 

  22. Tomoda K, Terashima H, Suzuki K, Inagi T, Terada H, Makino K. Enhanced transdermal delivery of indomethacin using combination of PLGA nanoparticles and iontophoresis in vivo. Colloids Surf B: Biointerfaces. 2012;92:50–4.

    Article  PubMed  CAS  Google Scholar 

  23. Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012;3

  24. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281–91.

    Article  PubMed  Google Scholar 

  25. Mun EA, Morrison PWJ, Williams AC, Khutoryanskiy VV. On the Barrier Properties of the Cornea: A Microscopy Study of the Penetration of Fluorescently Labeled Nanoparticles, Polymers, and Sodium Fluorescein. Mol Pharm. 2014;11(10):3556–64.

    Article  PubMed  CAS  Google Scholar 

  26. Lauweryns B, van den Oord JJ, Volpes R, Foets B, Missotten L. Distribution of very late activation integrins in the human cornea. An immunohistochemical study using monoclonal antibodies. Invest Ophthalmol Vis Sci. 1991;32(7):2079–2085.

  27. Stepp MA. Corneal integrins and their functions. Exp Eye Res. 2006;83(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  28. Chu Y, Chen N, Yu H, Mu H, He B, Hua H, et al. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles. Int J Nanomedicine. 2017;12:1353–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Singh SR, Grossniklaus HE, Kang SJ, Edelhauser HF, Ambati BK, Kompella UB. Intravenous transferrin, RGD peptide and dual-targeted nanoparticles enhance anti-VEGF intraceptor gene delivery to laser-induced CNV. Gene Ther. 2009;16(5):645–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kutlehria S, Behl G, Patel K, Doddapaneni R, Vhora I, Chowdhury N, et al. Cholecalciferol-PEG conjugate based micelles of doxorubicin for treatment of triple-negative breast cancer. AAPS Pharm Sci Tech. 2017;

  31. Lin Z, Liu X, Zhou T, Wang Y, Bai L, He H, et al. A mouse dry eye model induced by topical administration of benzalkonium chloride; 2011. 257–264 p.

  32. Taravati P, Lam DL, Leveque T, Van Gelder RN. Postcataract surgical inflammation. Curr Opin Ophthalmol 2012;23(1):12–18.

  33. Kymionis GD, Bouzoukis DI, Diakonis VF, Siganos C. Treatment of chronic dry eye: focus on cyclosporine. Clin Ophthalmol. 2008;2(4):829–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Dey S, Gunda S, Mitra AK. Pharmacokinetics of Erythromycin in Rabbit Corneas after Single-Dose Infusion: Role of P-Glycoprotein as a Barrier to in Vivo Ocular Drug Absorption. J Pharmacol Exp Ther. 2004;311(1):246–55.

    Article  PubMed  CAS  Google Scholar 

  35. Kawazu K, Yamada K, Nakamura M, Ota A. Characterization of Cyclosporin A Transport in Cultured Rabbit Corneal Epithelial Cells: P-Glycoprotein Transport Activity and Binding to Cyclophilin. Invest Ophthalmol Vis Sci. 1999;40(8):1738–1744.

  36. Saha P, Yang JJ, Lee VH. Existence of a p-glycoprotein drug efflux pump in cultured rabbit conjunctival epithelial cells. Invest Ophthalmol Vis Sci. 1998;39(7):1221–1226.

  37. Xue M-L, Zhu H, Thakur A, Willcox M. 1α, 25-Dihydroxyvitamin D3 inhibits pro-inflammatory cytokine and chemokine expression in human corneal epithelial cells colonized with Pseudomonas aeruginosa. Immunol Cell Biol. 2002;80(4):340–5.

    Article  PubMed  CAS  Google Scholar 

  38. Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S. Integrin-based Therapeutics: Biological Basis, Clinical Use and New Drugs. Nat Rev Drug Discov. 2016;15(3):173–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kunath K, Merdan T, Hegener O, Häberlein H, Kissel T. Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med. 2003;5(7):588–99.

    Article  PubMed  CAS  Google Scholar 

  40. Barot M, Bagui M, Gokulgandhi MR, Mitra AK. Prodrug Strategies in Ocular Drug Delivery. Medicinal chemistry (Shariqah (United Arab Emirates)). 2012;8(4):753–68.

    Article  CAS  Google Scholar 

  41. Duvvuri S, Majumdar S, Mitra AK. Role of metabolism in ocular drug delivery. Curr Drug Metab. 2004;5(6):507–15.

    Article  PubMed  CAS  Google Scholar 

  42. Foroutan SM, Watson DG. Synthesis and characterisation of polyethylene glycol conjugates of hydrocortisone as potential prodrugs for ocular steroid delivery. Int J Pharm. 1997;157(1):103–11.

    Article  CAS  Google Scholar 

  43. Foroutan SM, Watson DG. The in vitro evaluation of polyethylene glycol esters of hydrocortisone 21-succinate as ocular prodrugs. Int J Pharm. 1999;182(1):79–92.

    Article  PubMed  CAS  Google Scholar 

  44. Hao T, Chen D, Liu K, Qi Y, Tian Y, Sun P, et al. Micelles of d-α-Tocopheryl Polyethylene Glycol 2000 Succinate (TPGS 2K) for Doxorubicin Delivery with Reversal of Multidrug Resistance. ACS Appl Mater Interfaces. 2015;7(32):18064–75.

    Article  PubMed  CAS  Google Scholar 

  45. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6.

    Article  PubMed  CAS  Google Scholar 

  46. Epstein SP, Chen D, Asbell PA. Evaluation of biomarkers of inflammation in response to benzalkonium chloride on corneal and conjunctival epithelial cells. J Ocul Pharmacol Ther: Offic J Assoc Ocul Pharmacol Ther. 2009;25(5):415–24.

    Article  CAS  Google Scholar 

  47. Warcoin E, Clouzeau C, Roubeix C, Raveu AL, Godefroy D, Riancho L, et al. Hyperosmolarity and Benzalkonium Chloride Differently Stimulate Inflammatory Markers in Conjunctiva-Derived Epithelial Cells in vitro. Ophthalmic Res. 2017;58(1):40–8.

    Article  PubMed  CAS  Google Scholar 

  48. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17(6):584–91.

    Article  PubMed  CAS  Google Scholar 

  49. Lin Z, Liu X, Zhou T, Wang Y, Bai L, He H, et al. A mouse dry eye model induced by topical administration of benzalkonium chloride. Mol Vis. 2011;17:257–64.

    PubMed  PubMed Central  Google Scholar 

  50. De Saint Jean M, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C. Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells. Invest Ophthalmol Vis Sci. 1999;40(3):619–630.

  51. Li C, Song Y, Luan S, Wan P, Li N, Tang J, et al. Research on the Stability of a Rabbit Dry Eye Model Induced by Topical Application of the Preservative Benzalkonium Chloride. PLoS One. 2012;7(3):e33688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ebihara N, Ohtomo K, Tokura T, Ushio H, Murakami A. Effect of tacrolimus on chemokine production by corneal myofibroblasts via toll-like receptors, compared with cyclosporine and dexamethasone. Cornea. 2011;30(6):702–8.

    Article  PubMed  Google Scholar 

  53. Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF. Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford, England). 2010;49(8):1466–71.

    Article  CAS  Google Scholar 

  54. Carvalho JTG, Schneider M, Cuppari L, Grabulosa CC, Aoike TD, QBM R, et al. Cholecalciferol decreases inflammation and improves vitamin D regulatory enzymes in lymphocytes in the uremic environment: A randomized controlled pilot trial. PLos One. 2017;12(6):e0179540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Brumback RA, Leech RW. Neuropathology and basic neuroscience: Springer Science & Business Media; 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandip Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutlehria, S., Vhora, I., Bagde, A. et al. Tacrolimus Loaded PEG-Cholecalciferol Based Micelles for Treatment of Ocular Inflammation. Pharm Res 35, 117 (2018). https://doi.org/10.1007/s11095-018-2376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2376-7

KEY WORDS

Navigation