Pharmaceutical Research

, 35:62 | Cite as

Progesterone PLGA/mPEG-PLGA Hybrid Nanoparticle Sustained-Release System by Intramuscular Injection

  • Bin Xie
  • Yang Liu
  • Yuting Guo
  • Enbo Zhang
  • Chenguang Pu
  • Haibing He
  • Tian Yin
  • Xing Tang
Research Paper



To prepare sustained-release PLGA/mPEG-PLGA hybrid nanoparticles of progesterone (PRG), and evaluate the descending required administration dosage in vivo.


PRG hybrid nanoparticles (PRG H-NPs) based on PLGA/mPEG-PLGA were compared with PRG nanoparticles (PRG-NPs) of pure PLGA as the matrix and PRG-oil solutions. Nanoparticles (NPs) were formed by the method of nanoemulsion, and the pharmacokinetics of the sustained-release PRG H-NPs in male Sprague dawley (SD) rats were investigated. The rats were randomly divided into four groups, each group received: single dose of PRG H-NPs (14.58 mg/kg, i.m.) and PRG-NPs (14.58 mg/kg, i.m.), repeated dosing for 7 days of PRG-oil (2.08 mg/kg, i.m.) solution (Oil-L) and a higher dosage of PRG-oil (6.24 mg/kg, i.m.) solution (Oil-H), respectively.


In the pharmacokinetic test, the PRG H-NPs exhibited a comparatively good sustained-release effect against the PRG-NPs without mPEG-PLGA and PRG-oil solution. The pharmacokinetic parameters of the PRG H-NPs, PRG-NPs, Oil-L and Oil-H were AUC0–t(ng·h·mL−1) 8762.1, 1546.1, 1914.5, and 12,138.9, t1/2 (h)52.7, 44.1, 8.4 and 44.6 respectively.


Owing to the modification of PEG, PRG H-NPs can act as safe delivery platforms for sustained-release of drugs with a lower dosage required.

Key Words

in vivo PEGylated PLGA/mPEG-PLGA progesterone sustained release 



Area under the curve from time 0 to the last observed concentration time




Maximum serum concentration


Drug delivery systems


Drug loading


Dynamic light scattering


Differential scanning calorimetry


Ethyl acetate


Pluronic F68




Liquid chromatography–mass spectrometry/mass spectrometry


Methoxy poly (ethylene glycol)-poly(ε-caprolactone)


Mean retention time




Molecular weight




Phosphate buffered saline


Poly D, L-lactic-co-glycolic acid








Transmission electron microscopy


Acknowledgments and Disclosures

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors have declared no conflicts of interest. All the experiments reported comply with European Federation of Pharmaceutical Industries Associations.


  1. 1.
    Unfer V, Casini ML, Marelli G, Costabile L, Gerli S, Di RG. Different Routes of progesterone administration and polycystic ovary syndrome: a review of the literature. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol. 2005;21(2):119–27.CrossRefGoogle Scholar
  2. 2.
    Campagnoli C, Clavelchapelon F, Kaaks R, Peris C, Berrino F. Progestins and progesterone in hormone replacement therapy and the risk of breast cancer. J Steroid Biochem Mol Biol. 2005;96(2):95–108.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Linden MVD, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Hoboken: Wiley 2011. p. CD009154.Google Scholar
  4. 4.
    Fatemi HM, Popovictodorovic B, Papanikolaou E, Donoso P, Devroey P. An update of luteal phase support in stimulated IVF cycles. Hum Reprod Update. 2007;13(6):581–90.CrossRefPubMedGoogle Scholar
  5. 5.
    Nahoul K, Dehennin L, Jondet M, Roger M. Profiles of plasma estrogens, progesterone and their metabolites after oral or vaginal administration of estradiol or progesterone. Maturitas. 1993;16(3):185–202.CrossRefPubMedGoogle Scholar
  6. 6.
    Warren MP, Shantha S. Uses of progesterone in clinical practice. Int J Fertil Womens Med. 1999;44(2):96.PubMedGoogle Scholar
  7. 7.
    Vaisbuch E, Leong M, Shoham Z. Progesterone support in IVF: is evidence-based medicine translated to clinical practice? A worldwide web-based survey. Reprod BioMed Online. 2012;25(2):139–45.CrossRefPubMedGoogle Scholar
  8. 8.
    Bulletti C, De ZD, Giacomucci E, Polli V, Rossi S, Alfieri S, et al. Vaginal drug delivery: the first uterine pass effect. Ann N Y Acad Sci. 1997;828(1):285.CrossRefPubMedGoogle Scholar
  9. 9.
    Phy JL, Weiss WT, Weiler CR, Damario MA. Hypersensitivity to progesterone-in-oil after in vitro fertilization and embryo transfer. Fertil Steril. 2003;80(5):1272–5.CrossRefPubMedGoogle Scholar
  10. 10.
    Penzias AS. Luteal phase support. Fertil Steril. 2002;77(2):318.CrossRefPubMedGoogle Scholar
  11. 11.
    Check JH. Luteal phase support for in vitro fertilization-embryo transfer--present and future methods to improve successful implantation. Clin Exp Obstet Gynecol. 2012;39(4):422–8.PubMedGoogle Scholar
  12. 12.
    Propst AM, Hill JA, Ginsburg ES, Hurwitz S, Politch J, Yanushpolsky EH. A randomized study comparing Crinone 8% and intramuscular progesterone supplementation in in vitro fertilization-embryo transfer cycles. Fertil Steril. 2001;76(6):1144–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Pabuccu R, Akar ME. Luteal phase support in assisted reproductive technology. Curr Opin Obstet Gynecol. 2005;17(3):277.CrossRefPubMedGoogle Scholar
  14. 14.
    Hubayter ZR, Muasher SJ. Luteal supplementation in in vitro fertilization: more questions than answers. Fertil Steril. 2008;89(4):749–58.CrossRefPubMedGoogle Scholar
  15. 15.
    Endocrinology PCoASfRMicwSfR, Infertility. Progesterone supplementation during the luteal phase and in early pregnancy in the treatment of infertility: an educational bulletin. Fertility & Sterility. 2008;90(5 Suppl):S150.Google Scholar
  16. 16.
    Check JH, Nowroozi K, Chase J, Nazari A, Callan C. Comparison of luteal-phase support with high- and low-dose progesterone therapy on pregnancy rates in an in vitro fertilization program. J Assist Reprod Genet. 1991;8(3):173.CrossRefGoogle Scholar
  17. 17.
    Cometti B. Pharmaceutical and clinical development of a novel progesterone formulation. Acta Obstet Gynecol Scand. 2015;94(S161):28–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Xuan J, Lin Y, Huang J, Yuan F, Li X, Lu Y, et al. Exenatide-loaded PLGA microspheres with improved glycemic control: in vitro bioactivity and in vivo pharmacokinetic profiles after subcutaneous administration to SD rats. Peptides. 2013;46(14):172–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim JY, Lee H, Oh KS, Kweon S, Jeon OC, Byun Y, et al. Multilayer nanoparticles for sustained delivery of exenatide to treat type 2 diabetes mellitus. Biomaterials. 2013;34(33):8444.CrossRefPubMedGoogle Scholar
  20. 20.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm. 2008;5(4):505.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bazile D, Prud'Homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84(4):493–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18(3–4):301–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Li Y, Pei Y, Zhang X, Gu Z, Zhou Z, Yuan W, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J control release. 2001;71(2):203–11.CrossRefPubMedGoogle Scholar
  24. 24.
    Xu Q, Ensign LM, Boylan NJ, Schön A, Gong X, Yang JC, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9(9):9217.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm. 2014;11(4):1250–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Teeranachaideekul V, Souto EB, Junyaprasert VB, Müllerb RH. Cetyl palmitate-based NLC for topical delivery of coenzyme Q – development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm. 2007;67(1):141–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Arayasibaja AM, Soldi V, Campos CE, Cardoso SG, Cuffini SL. Crystallization of progesterone polymorphs using polymer-induced heteronucleation (PIHn) method. Drug Dev Ind Pharm. 2012;41(5):851–8.CrossRefGoogle Scholar
  28. 28.
    Ritger PL, Peppas NAA. Simple equation for solute release part 1. Fickian and nonfickian release from nonswellable devices in the form of slabs, spheres, cylinders or disks. J Control Release. 1987;5:23–6.CrossRefGoogle Scholar
  29. 29.
    Mohammad AK, Amayreh LK, Mazzara JM, Reineke JJ. Rapid lymph accumulation of polystyrene nanoparticles following pulmonary administration. Pharm Res. 2013;30(2):424–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, et al. 'Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of t. Colloids Surf B Biointerfaces 2000;18(3–4):301–313.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bin Xie
    • 1
  • Yang Liu
    • 1
  • Yuting Guo
    • 1
  • Enbo Zhang
    • 1
  • Chenguang Pu
    • 1
  • Haibing He
    • 1
  • Tian Yin
    • 1
  • Xing Tang
    • 1
  1. 1.School of PharmacyShenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations