Skip to main content

Advertisement

Log in

A Novel Phenylchromane Derivative Increases the Rate of Glucose Uptake in L6 Myotubes and Augments Insulin Secretion from Pancreatic Beta-Cells by Activating AMPK

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A series of novel polycyclic aromatic compounds that augment the rate of glucose uptake in L6 myotubes and increase glucose-stimulated insulin secretion from beta-cells were synthesized. Designing these molecules, we have aimed at the two main pathogenic mechanisms of T2D, deficient insulin secretion and diminished glucose clearance. The ultimate purpose of this work was to create a novel antidiabetic drug candidate with bi-functional mode of action.

Methods

All presented compounds were synthesized, and characterized in house. INS-1E cells and L6 myoblasts were used for the experiments. The rate of glucose uptake, mechanism of action, level of insulin secretion and the druggability of the lead compound were studied.

Results

The lead compound (6-(1,3-dithiepan-2-yl)-2-phenylchromane), dose- and time-dependently at the low μM range increased the rate of glucose uptake in L6 myotubes and insulin secretion in INS-1E cells. The compound exerted its effects through the activation of the LKB1 (Liver Kinase B1)-AMPK pathway. In vitro metabolic parameters of this lead compound exhibited good druggability.

Conclusions

We anticipate that bi-functionality (increased rate of glucose uptake and augmented insulin secretion) will allow the lead compound to be a starting point for the development of a novel class of antidiabetic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

[3H]dGlc:

1-Tritium-2-deoxyglucose

ACC:

Acetyl-CoA carboxylase

AICAR:

5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside

Akt/PKB:

Akt/Protein kinase B

AMPK:

AMP kinase

AS160 :

AMPK substrate of phosphorylation 160 kDA

BDA :

Benzaldehyde dimethyl acetal

CYP :

Cytochrome P450

DCM:

Dichloromethane

DEAD:

Diethyl azodicarboxylate

DMF:

Dimethrylformamide

GLUT4:

Glucose transporter type 4

GSIS:

Glucose-stimulated insulin secretion

hERG:

“Human ether-à-go-go”-related gene channels

HRP :

Horseradish peroxidase

LKB1:

Liver Kinase B1

mGPD:

Mitochondrial glycerophosphate dehydrogenase

OPD:

O-phenylenediamine

PCC:

Pyridinium Chlorochromate

PMSF:

Phenylmethanesulfonylfluoride

QTof:

Quadrupole time of-flight mass spectrometer

T2D:

Type 2 diabetes

THF:

Tetrahydrofuran

TMS:

Tetramethylsilane

TMSCl:

Trimethylsilyl chloride

TosCl:

Toluenesulfonyl chloride

References

  1. Rojasand LB, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr. 2013;5:6.

    Google Scholar 

  2. Consoli A, Gomis R, Halimi S, Home PD, Mehnert H, Strojek K, et al. Initiating oral glucose-lowering therapy with metformin in type 2 diabetic patients: an evidence-based strategy to reduce the burden of late-developing diabetes complications. Diabetes Metab. 2004;30:509–16.

    CAS  PubMed  Google Scholar 

  3. Jensenand TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol. 2012;590:1069–76.

    Google Scholar 

  4. Rana S, Blowers EC, Natarajan A. Small molecule adenosine 5′-monophosphate activated protein kinase (AMPK) modulators and human diseases. J Med Chem. 2015;58:2–29.

    CAS  PubMed  Google Scholar 

  5. Karlssonand HK, Zierath JR. Insulin signaling and glucose transport in insulin resistant human skeletal muscle. Cell Biochem Biophys. 2007;48:103–13.

    Google Scholar 

  6. Richterand EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    Google Scholar 

  7. Klip A, Schertzer JD, Bilan PJ, Thong F, Antonescu C. Regulation of glucose transporter 4 traffic by energy deprivation from mitochondrial compromise. Acta Physiol (Oxf). 2009;196:27–35.

    CAS  Google Scholar 

  8. Ojuka EO. Role of calcium and AMP kinase in the regulation of mitochondrial biogenesis and GLUT4 levels in muscle. Proc Nutr Soc. 2004;63:275–8.

    CAS  PubMed  Google Scholar 

  9. Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol. 2015;33:1–7.

    CAS  Google Scholar 

  10. Kyriakis JM. At the crossroads: AMP-activated kinase and the LKB1 tumor suppressor link cell proliferation to metabolic regulation. J Biol. 2003;2:26.

    PubMed  PubMed Central  Google Scholar 

  11. Jiang SJ, Dong H, Li JB, Xu LJ, Zou X, Wang KF, et al. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol. 2015;21:7777–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie Z, Ding SQ, Shen YF. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun. 2014;454:313–9.

    CAS  PubMed  Google Scholar 

  13. Yang Y, Zhao Z, Liu Y, Kang X, Zhang H, Meng M. Suppression of oxidative stress and improvement of liver functions in mice by ursolic acid via LKB1-AMP-activated protein kinase signaling. J Gastroenterol Hepatol. 2015;30:609–18.

    PubMed  Google Scholar 

  14. Zaks I, Getter T, Gruzman A. Activators of AMPK: not just for Type II diabetes. Future Med Chem. 2014;6:1325–53.

    CAS  PubMed  Google Scholar 

  15. Cameronand KO, Kurumbail RG. Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators. Bioorg Med Chem Lett. 2016;26:5139–48.

    Google Scholar 

  16. Giordanettoand F, Karis D. Direct AMP-activated protein kinase activators: a review of evidence from the patent literature. Expert Opin Ther Pat. 2012;22:1467–77.

    Google Scholar 

  17. Sliwinskaand A, Drzewoski J. Molecular action of metformin in hepatocytes: an updated insight. Curr Diabetes Rev. 2015;11:175–81.

    Google Scholar 

  18. Zhou JY, Xu B, Li L, New Role A. for an Old Drug: Metformin Targets MicroRNAs in Treating Diabetes and Cancer. Drug Dev Res. 2015;76:263–9.

    CAS  PubMed  Google Scholar 

  19. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab. 2014;20:953–66.

    CAS  PubMed  Google Scholar 

  20. Cohen G, Riahi Y, Alpert E, Gruzman A, Sasson S. The roles of hyperglycaemia and oxidative stress in the rise and collapse of the natural protective mechanism against vascular endothelial cell dysfunction in diabetes. Arch Physiol Biochem. 2007;113:259–67.

    CAS  PubMed  Google Scholar 

  21. Cameron KO, Kung DW, Kalgutkar AS, Kurumbail RG, Miller R, Salatto CT, et al. Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy. J Med Chem. 2016;59:8068–81.

    CAS  PubMed  Google Scholar 

  22. Hsu MH, Savas U, Lasker JM, Johnson EF. Genistein, resveratrol, and 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside induce cytochrome P450 4F2 expression through an AMP-activated protein kinase-dependent pathway. J Pharmacol Exp Ther. 2011;337:125–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Benziane B, Bjornholm M, Lantier L, Viollet B, Zierath JR, Chibalin AV. AMP-activated protein kinase activator A-769662 is an inhibitor of the Na(+)-K(+)-ATPase. Am J Physiol Cell Physiol. 2009;297:C1554–66.

    CAS  PubMed  Google Scholar 

  24. Mirguet O, Sautet S, Clement CA, Toum J, Donche F, Marques C, et al. Discovery of Pyridones As Oral AMPK Direct Activators. ACS Med Chem Lett. 2013;4:632–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ojukaand EO, Goyaram V. Mechanisms in exercise-induced increase in glucose disposal in skeletal muscle. Med Sport Sci. 2014;60:71–81.

    Google Scholar 

  26. Krishan S, Richardson DR, Sahni S. Adenosine monophosphate-activated kinase and its key role in catabolism: structure, regulation, biological activity, and pharmacological activation. Mol Pharmacol. 2015;87:363–77.

    PubMed  Google Scholar 

  27. Miglianico M, Nicolaes GA, Neumann D. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design. J Med Chem. 2016;59:2879–93.

    CAS  PubMed  Google Scholar 

  28. Kone M, Pullen TJ, Sun G, Ibberson M, Martinez-Sanchez A, Sayers S, et al. LKB1 and AMPK differentially regulate pancreatic beta-cell identity. FASEB J. 2014;28:4972–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Swisa A, Granot Z, Tamarina N, Sayers S, Bardeesy N, Philipson L, et al. Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. J Biol Chem. 2015;290:20934–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun G, Tarasov AI, McGinty JA, French PM, McDonald A, Leclerc I, et al. LKB1 deletion with the RIP2.Cre transgene modifies pancreatic beta-cell morphology and enhances insulin secretion in vivo. Am J Physiol Endocrinol Metab. 2010;298:E1261–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fu A, Robitaille K, Faubert B, Reeks C, Dai XQ, Hardy AB, et al. LKB1 couples glucose metabolism to insulin secretion in mice. Diabetologia. 2015;58:1513–22.

    CAS  PubMed  Google Scholar 

  32. Granot Z, Swisa A, Magenheim J, Stolovich-Rain M, Fujimoto W, Manduchi E, et al. LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab. 2009;10:296–308.

  33. Fu A, Ng AC, Depatie C, Wijesekara N, He Y, Wang GS, et al. Loss of Lkb1 in adult beta cells increases beta cell mass and enhances glucose tolerance in mice. Cell Metab. 2009;10:285–95.

    CAS  PubMed  Google Scholar 

  34. Fu A, Eberhard CE, Screaton RA. Role of AMPK in pancreatic beta cell function. Mol Cell Endocrinol. 2013;366:127–34.

    CAS  PubMed  Google Scholar 

  35. Langelueddecke C, Jakab M, Ketterl N, Lehner L, Hufnagl C, Schmidt S, et al. Effect of the AMP-kinase modulators AICAR, metformin and compound C on insulin secretion of INS-1E rat insulinoma cells under standard cell culture conditions. Cell Physiol Biochem. 2012;29:75–86.

    CAS  PubMed  Google Scholar 

  36. da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J. 2003;371:761–74.

    PubMed  PubMed Central  Google Scholar 

  37. Sun G, Tarasov AI, McGinty J, McDonald A, da Silva Xavier G, Gorman T, et al. Ablation of AMP-activated protein kinase alpha1 and alpha2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo. Diabetologia. 2010;53:924–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryu GR, Lee MK, Lee E, Ko SH, Ahn YB, Kim JW, et al. Activation of AMP-activated protein kinase mediates acute and severe hypoxic injury to pancreatic beta cells. Biochem Biophys Res Commun. 2009;386:356–62.

    CAS  Google Scholar 

  39. Beall C, Watterson KR, McCrimmon RJ, Ashford ML. AMPK modulates glucose-sensing in insulin-secreting cells by altered phosphotransfer to KATP channels. J Bioenerg Biomembr. 2013;45:229–41.

    CAS  PubMed  Google Scholar 

  40. Matsuda T, Takai T, Suzuki E, Kanno A, Koyanagi-Kimura M, Asahara S-i, et al. Regulation of Pancreatic β Cell Mass by Cross-Interaction between CCAAT Enhancer Binding Protein β Induced by Endoplasmic Reticulum Stress and AMP-Activated Protein Kinase Activity. PLoS One. 2015;10:e0130757.

    PubMed  PubMed Central  Google Scholar 

  41. Wang K, Sun Y, Lin P, Song J, Zhao R, Li W, et al. Liraglutide Activates AMPK Signaling and Partially Restores Normal Circadian Rhythm and Insulin Secretion in Pancreatic Islets in Diabetic Mice. Biol Pharm Bull. 2015;38:1142–9.

    CAS  PubMed  Google Scholar 

  42. Pasternak L, Meltzer-Mats E, Babai-Shani G, Cohen G, Viskind O, Eckel J, et al. Benzothiazole derivatives augment glucose uptake in skeletal muscle cells and stimulate insulin secretion from pancreatic beta-cells via AMPK activation. Chem Commun (Camb). 2014;50:11222–5.

    CAS  PubMed  Google Scholar 

  43. Beall C, Piipari K, Al-Qassab H, Smith MA, Parker N, Carling D, et al. Loss of AMP-activated protein kinase α2 subunit in mouse β-cells impairs glucose-stimulated insulin secretion and inhibits their sensitivity to hypoglycaemia. Biochem J. 2010;429:323–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gruzman A, Elgart A, Viskind O, Billauer H, Dotan S, Cohen G, et al. Antihyperglycaemic activity of 2,4:3,5-dibenzylidene-D-xylose-diethyl dithioacetal in diabetic mice. J Cell Mol Med. 2012;16:594–604.

    PubMed  Google Scholar 

  45. Gruzman A, Shamni O, Ben Yakir M, Sandovski D, Elgart A, Alpert E, et al. Novel D-Xylose Derivatives Stimulate Muscle Glucose Uptake by Activating AMP-Activated Protein Kinase α. J Med Chem. 2008;51:8096–108.

    CAS  PubMed  Google Scholar 

  46. Meltzer-Mats E, Babai-Shani G, Pasternak L, Uritsky N, Getter T, Viskind O, et al. Synthesis and mechanism of hypoglycemic activity of benzothiazole derivatives. J Med Chem. 2013;56:5335–50.

    CAS  PubMed  Google Scholar 

  47. Gottlieb HE, Kotlyar V, Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem. 1997;62:7512–5.

    CAS  PubMed  Google Scholar 

  48. La Regina G, Diodata D'Auria F, Tafi A, Piscitelli F, Olla S, Caporuscio F, et al. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, New Imidazoles with Potent Activity against Candida albicans and Dermatophytes. Synthesis, Structure-Activity Relationship, and Molecular Modeling Studies. J Med Chem. 2008;51:3841–55.

    PubMed  Google Scholar 

  49. Hodgetts KJ. A stereocontrolled route to 2-substituted chromans. Tetrahedron Lett. 2000;41:8655–9.

    CAS  Google Scholar 

  50. Hodgetts KJ. Inter- and intramolecular Mitsunobu reaction based approaches to 2-substituted chromans and chroman-4-ones. Tetrahedron. 2005;61:6860–70.

    CAS  Google Scholar 

  51. Ongand BS, Chan TH. A simple method of dithioacetalization and dithioketalization. Synth Commun. 1977;7:283–6.

    Google Scholar 

  52. Kimura M, Hamakawa T, Hanabusa K, Shirai H, Kobayashi N. Synthesis of Multicomponent Systems Composed of One Phthalocyanine and Four Terpyridine Ligands. Inorg Chem. 2001;40:4775–9.

    CAS  PubMed  Google Scholar 

  53. Handrickand GR, Atkinson ER. Potential antiradiation drugs. III. 2-Amino-2-alkyl-1,3-propanedithiols and 3-amino-4-mercapto-1-butanol. J Med Chem. 1966;9:558–62.

    Google Scholar 

  54. Zhong W, Tang Y, Zampella G, Wang X, Yang X, Hu B, et al. A rare bond between a soft metal (FeI) and a relatively hard base (RO-, R = phenolic moiety). Inorg Chem Commun. 2010;13:1089–92.

    CAS  Google Scholar 

  55. Munder A, Moskovitz Y, Redko B, Levy AR, Ruthstein S, Gellerman G, et al. Antiproliferative Effect of Novel Aminoacridine-based Compounds. Med Chem. 2015;11:373–82.

    CAS  PubMed  Google Scholar 

  56. Shimanovich U, Munder A, Azoia NG, Cavaco-Paulo A, Gruzman A, Knowles TP, et al. Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules. RSC Adv. 2014;4:10303–9.

    CAS  Google Scholar 

  57. Suckow AT, Zhang C, Egodage S, Comoletti D, Taylor P, Miller MT, et al. Transcellular neuroligin-2 interactions enhance insulin secretion and are integral to pancreatic beta cell function. J Biol Chem. 2012;287:19816–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanderson RJ, Shepperdson RT, Vatter AE, Talmage DW. Isolation and enumeration of peripheral blood monocytes. J Immunol. 1977;118:1409–14.

    CAS  PubMed  Google Scholar 

  59. Eckshtain-Levi M, Lavi R, Yufit DS, Daniel B, Green O, Fleker O, et al. A versatile water-soluble chelating and radical scavenging platform. Chem Commun (Camb). 2016;52:2350–3.

    CAS  Google Scholar 

  60. Shapira R, Rudnick S, Daniel B, Viskind O, Aisha V, Richman M, et al. Multifunctional cyclic D,L-α-peptide architectures stimulate non-insulin dependent glucose uptake in skeletal muscle cells and protect them against oxidative stress. J Med Chem. 2013;56:6709–18.

    CAS  PubMed  Google Scholar 

  61. Zatara G, Hertz R, Shaked M, Mayorek N, Morad E, Grad E, et al. Suppression of FoxO1 activity by long-chain fatty acyl analogs. Diabetes. 2011;60:1872–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cohen G, Riahi Y, Shamni O, Guichardant M, Chatgilialoglu C, Ferreri C, et al. Role of lipid peroxidation and PPAR-delta in amplifying glucose-stimulated insulin secretion. Diabetes. 2011;60:2830–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li XQ, Andersson TB, Ahlstrom M, Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004;32:821–7.

    CAS  PubMed  Google Scholar 

  64. Niwa T, Shiraga T, Takagi A. Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull. 2005;28:1805–8.

    CAS  PubMed  Google Scholar 

  65. Mori T, Sawada Y, Oku A. Ring-expansion of thioacetal ring via bicyclosulfonium ylide. Effect Of protic nucleophile on ylide intermediate J Org Chem. 2000;65:3620–5.

    CAS  PubMed  Google Scholar 

  66. Cui Z, Chen X, Lu B, Park SK, Xu T, Xie Z, et al. Preliminary quantitative profile of differential protein expression between rat L6 myoblasts and myotubes by stable isotope labeling with amino acids in cell culture. Proteomics. 2009;9:1274–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wertheimer E, Sasson S, Cerasi E. Regulation of hexose transport in L8 myocytes by glucose: possible sites of interaction. J Cell Physiol. 1990;143:330–6.

    CAS  PubMed  Google Scholar 

  68. Itani SI, Saha AK, Kurowski TG, Coffin HR, Tornheim K, Ruderman NB. Glucose autoregulates its uptake in skeletal muscle: involvement of AMP-activated protein kinase. Diabetes. 2003;52:1635–40.

    CAS  PubMed  Google Scholar 

  69. Ben-Yakir M, Gruzman A, Alpert E, Sasson S. Glucose transport regulators. Current Medicinal Chemistry-Immunology. Endocr Metab Agents. 2005;5:519–27.

    CAS  Google Scholar 

  70. Shamni O, Cohen G, Gruzman A, Zaid H, Klip A, Cerasi E, et al. Regulation of GLUT4 activity in myotubes by 3-O-methyl-d-glucose. Biochim Biophys Acta. 2017;1859:1900–10.

    CAS  Google Scholar 

  71. Shamni O, Cohen G, Gruzman A, Zaid H, Klip A, Cerasi E, et al. Supportive data on the regulation of GLUT4 activity by 3-O-methyl-D-glucose. Data Brief. 2017;14:329–36.

    PubMed  PubMed Central  Google Scholar 

  72. Furtado LM, Somwar R, Sweeney G, Niu W, Klip A. Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol. 2002;80:569–78.

    CAS  PubMed  Google Scholar 

  73. Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal. 2011;23:1546–54.

    CAS  PubMed  Google Scholar 

  74. Kottakisand F, Bardeesy N. LKB1-AMPK axis revisited. Cell Res. 2012;22:1617–20.

    Google Scholar 

  75. Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, et al. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes. PLoS One. 2012;7:e51709.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Deshmukh AS, Hawley JA, Zierath JR. Exercise-induced phospho-proteins in skeletal muscle. Int J Obes (Lond) 32 Suppl. 2008;4:S18–23.

    Google Scholar 

  77. Hardieand DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002;30:1064–70.

    Google Scholar 

  78. Ross FA, MacKintosh C, Hardie DG. AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J. 2016;283:2987–3001.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mackenzieand RW, Elliott BT. Akt/PKB activation and insulin signaling: a novel insulin signaling pathway in the treatment of type 2 diabetes. Diabetes Metab Syndr Obes. 2014;7:55–64.

    Google Scholar 

  80. Thomas D, Karle CA, Kiehn J. The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des. 2006;12:2271–83.

    CAS  PubMed  Google Scholar 

  81. Pierson JB, Berridge BR, Brooks MB, Dreher K, Koerner J, Schultze AE, et al. A public-private consortium advances cardiac safety evaluation: achievements of the HESI Cardiac Safety Technical Committee. J Pharmacol Toxicol Methods. 2013;68:7–12.

    CAS  PubMed  Google Scholar 

  82. Zangerand UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138:103–41.

    Google Scholar 

  83. Sager JE, Lutz JD, Foti RS, Davis C, Kunze KL, Isoherranen N. Fluoxetine- and norfluoxetine-mediated complex drug-drug interactions: in vitro to in vivo correlation of effects on CYP2D6, CYP2C19, and CYP3A4. Clin Pharmacol Ther. 2014;95:653–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Quinn DI, Nemunaitis J, Fuloria J, Britten CD, Gabrail N, Yee L, et al. Effect of the cytochrome P450 2C19 inhibitor omeprazole on the pharmacokinetics and safety profile of bortezomib in patients with advanced solid tumours, non-Hodgkin's lymphoma or multiple myeloma. Clin Pharmacokinet. 2009;48:199–209.

    CAS  PubMed  Google Scholar 

  85. Furuta S, Kamada E, Suzuki T, Sugimoto T, Kawabata Y, Shinozaki Y, et al. Inhibition of drug metabolism in human liver microsomes by nizatidine, cimetidine and omeprazole. Xenobiotica. 2001;31:1–10.

    CAS  PubMed  Google Scholar 

  86. Wen X, Wang J-S, Neuvonen PJ, Backman JT. Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur J Clin Pharmacol. 2002;57:799–804.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shlomo Sasson or Arie Gruzman.

Electronic supplementary material

ESM 1

(DOC 54625 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentul, N., Avrahami, Y., Shubely, M. et al. A Novel Phenylchromane Derivative Increases the Rate of Glucose Uptake in L6 Myotubes and Augments Insulin Secretion from Pancreatic Beta-Cells by Activating AMPK. Pharm Res 34, 2873–2890 (2017). https://doi.org/10.1007/s11095-017-2271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-017-2271-7

Key Words

Navigation