Advertisement

Pharmaceutical Research

, Volume 34, Issue 3, pp 591–598 | Cite as

Intra- and Extracellular Biosynthesis and Characterization of Iron Nanoparticles from Prokaryotic Microorganisms with Anticoagulant Activity

  • Karina A. Crespo
  • José L. Baronetti
  • Melisa A. Quinteros
  • Paulina L. Páez
  • María G. Paraje
Research Paper

Abstract

Background

The use of microorganisms for the synthesis of nanoparticles (NPs) is relatively new in basic research and technology areas.

Purpose

This work was conducted to optimized the biosynthesis of iron NPs intra- and extracellular by Escherichia coli or Pseudomonas aeruginosa and to evaluate their anticoagulant activity.

Study Design/Methods

The structures and properties of the iron NPs were investigated by Ultraviolet–visible (UV-vis) spectroscopy, Zeta potential, Dynamic light scattering (DLS), Field emission scanning electron microscope (FESEM)/ Energy dispersive X-ray (EDX) and transmission electron microscopy (TEM). Anticoagulant activity was determined by conducting trials of Thrombin Time (TT), Activated Partial Prothrombin Time (APTT) and Prothrombin Time (PT).

Results

UV-vis spectrum of the aqueous medium containing iron NPs showed a peak at 275 nm. The forming of iron NPs was confirmed by FESEM/ EDX, and TEM. The morphology was spherical shapes mostly with low polydispersity and the average particle diameter was 23 ± 1 nm. Iron NPs showed anticoagulant activity by the activation of extrinsic pathway.

Conclusion

The eco-friendly process of biosynthesis of iron NPs employing prokaryotic microorganisms presents a good anticoagulant activity. This could be explored as promising candidates for a variety of biomedical and pharmaceutical applications.

KEY WORDS

anticoagulant activity Escherichia coli iron nanoparticles microbial biosynthesis Pseudomonas aeruginosa 

ABBREVIATIONS

APTT

Activated protombin time test

DLS

Dynamic light scattering

EDX

Energy dispersive X-ray

FESEM

Field emission scanning electron microscope

NPs

Nanoparticles

PT

Protombin time

SPR

Surface plasmon resonance

TEM

Transmission electron microscopy

TSB

Trypticase soy broth

TT

Thrombin time

UV-vis

Ultraviolet-visible

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

PL Páez and MG Paraje are members of the Research Career of CONICET. KA Crespo is a postdoctoral fellow of CONICET. MA Quinteros is PhD fellow of CONICET. We are also very grateful to Wiener Lab SAIC. This work was supported by the following Grants: SECyT, FONCyT and CONICET.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have not conflict of interest.

References

  1. 1.
    Larrañeta E, McCrudden MT, Courtenay AJ, Donnelly RF. Microneedles: a new frontier in nanomedicine delivery. Pharm Res. 2016;33(5):1055–73. doi: 10.1007/s11095-016-1885-5.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu J, Qiao SZ, Hu QH, Lu GQ. Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small. 2011;7(4):425–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Luechinger NA, Grass RN, Athanassiou EK, Stark WJ. Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater. 2010;22(1):155–60.CrossRefGoogle Scholar
  4. 4.
    Hulkoti NI, Taranath TC. Biosynthesis of nanoparticles using microbes a review. Colloids Surf B. 2014;121:474–83.CrossRefGoogle Scholar
  5. 5.
    Teja AS, Koh P. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Crystal Growth Char Mat. 2009;55(1):22–45.CrossRefGoogle Scholar
  6. 6.
    Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl. 2016;9:49–67.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):144.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hasany S, Ahmed I, Rajan J, Rehman A. Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol. 2012;2(6):148–58.CrossRefGoogle Scholar
  9. 9.
    Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1-2):1–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang X, Yan S, Tyagi RD, Surampalli RY. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere. 2011;82:489–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Naha PC, Lau KC, Hajfathalian M, Mian S, Chhour P, Uppuluri L, et al. Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale. 2016;8(28):13740–54.CrossRefPubMedGoogle Scholar
  12. 12.
    Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.CrossRefPubMedGoogle Scholar
  13. 13.
    Angel Villegas N, Baronetti J, Albesa I, Etcheverría A, Becerra MC, Padola NL, et al. Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms. Toxicol In Vitro. 2015;29:1692–700.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang J, Shin MC, Yang VC. Magnetic targeting of novel heparinized iron oxide nanoparticles evaluated in a 9L-glioma mouse model. Pharm Res. 2014;31(3):579–92.CrossRefPubMedGoogle Scholar
  15. 15.
    Quinteros MA, Aiassa Martínez IM, Dalmasso PR, Páez PL. Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. Int J Biomater. 2016;2016:5971047. doi: 10.1155/2016/5971047.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol in Vitro. 2016;36:216–23.CrossRefPubMedGoogle Scholar
  17. 17.
    Mohamed YM, Azzam AM, Amin BH, Safwat NA. Mycosynthesis of iron nanoparticles by Alternaria alternata and its antibacterial activity. Afr J Biotechnol. 2015;14(14):1234–41.CrossRefGoogle Scholar
  18. 18.
    Wiener Lab Group. Vademecum. Reagents for Clinical Laboratory. Ed 2000. Rosario, Argentina. 2000.Google Scholar
  19. 19.
    Kern A, Várnai K, Vásárhelyi B. Thrombin generation assays and their clinical application. Orv Hetil. 2014;155(22):851–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Young DS. Effects of drugs on clinical laboratory tests. 4th ed. Washington DC: AACC Press; 2001.Google Scholar
  21. 21.
    Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, et al. Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine. 2012;8:328–36.PubMedGoogle Scholar
  22. 22.
    Lassenberger A, Bixner O, Gruenewald T, Lichtenegger H, Zirbs R, Reimhult E. Evaluation of high-yield purification methods on monodisperse PEG-grafted iron oxide nanoparticles.Google Scholar
  23. 23.
    Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M. Bacterial synthesis of nanocrystalline magnetite. J Am Chem Soc. 2005;127:9326–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee JH, Roh Y, Hur HG. Microbial production and characterization of superparamagnetic magnetite nanoparticles by Shewanella sp. HN-41. J Microbiol Biotechnol. 2008;18:1572–7.PubMedGoogle Scholar
  25. 25.
    Roh Y, Jang HD, Suh Y. Microbial synthesis of magnetite and Mn substituted magnetite nanoparticles: influence of bacteria and incubation temperature. J Nanosci Nanotechnol. 2007;7:3938–43.CrossRefPubMedGoogle Scholar
  26. 26.
    Quester K, Avalos-Borja M, Castro-Longoria E. Biosynthesis and microscopic study of metallic nanoparticles. Micron. 2013;54–55:1–27.CrossRefPubMedGoogle Scholar
  27. 27.
    Gonzalo J, Serna R, Sol J, Babonneau D, Afonso C. Morphological and interaction effects on the surface plasmon resonance of metal Nanoparticles. J Phys Condens Matter. 2003;15(42):3001–2.CrossRefGoogle Scholar
  28. 28.
    Srivastava SK, Constanti M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res. 2012;14:1–10.CrossRefGoogle Scholar
  29. 29.
    Bharde A, Rautray D, Sarkar I, Seikh M, Sanyal M, Ahmad A, et al. Fungus mediated synthesis of magnetite nanoparticles. Small. 2006;2:135–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Lin SY, Wu SH, Chen CH. A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed. 2006;45(30):4948–51.CrossRefGoogle Scholar
  31. 31.
    Mahdavi M, Ahmad MB, Haron MJ, Namvar F, Nadi B, Rahman MZ, Amin J. Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules. 2013; 27,18(7):7533–48.Google Scholar
  32. 32.
    Lin J, Weng X, Dharmarajan R, Chen Z. Characterization and reactivity of iron based nanoparticles synthesized by tea extracts under various atmospheres. Chemosphere. 2016;25(169):413–7.Google Scholar
  33. 33.
    Bini R, Marques RFC, Santos FJ, Chaker JA, Jafelicci Jr M. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J Magn Magn Mater. 2012;324(4):534–9.CrossRefGoogle Scholar
  34. 34.
    Wang N, Hsu C, Zhu L, Tseng S, Hsu JP. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci. 2013;407:22–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Shrivastava S, Bera T, Sunil Singh K, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano. 2009;3:1357–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Mahdavi M, Namvar F, Ahmad MB, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe33O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18(5):5954–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karina A. Crespo
    • 1
  • José L. Baronetti
    • 1
    • 2
  • Melisa A. Quinteros
    • 1
    • 4
  • Paulina L. Páez
    • 3
    • 4
  • María G. Paraje
    • 1
    • 2
  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  2. 2.Cátedra de Microbiología, Facultad de Ciencias Exactas Físicas y NaturalesUniversidad Nacional de Córdoba (UNC)CórdobaArgentina
  3. 3.Unidad de Tecnología Farmacéutica (UNITEFA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  4. 4.Departamento de Farmacia, Facultad de Ciencias QuímicasUniversidad Nacional de Córdoba (UNC)CórdobaArgentina

Personalised recommendations