Advertisement

Pharmaceutical Research

, Volume 34, Issue 2, pp 394–407 | Cite as

Comparison of Dialysis- and Solvatofluorochromism-Based Methods to Determine Drug Release Rates from Polymer Nanoassemblies

  • Derek Reichel
  • Younsoo Bae
Research Paper

Abstract

Purpose

To compare traditional dialysis- and novel solvatofluorochromism (SFC)-based methods for accurate determination of drug release profiles for nanoparticle drug carriers.

Methods

Polymer nanoassemblies (PNAs) varying in drug release patterns were prepared using poly(ethylene glycol), poly(ethylenimine), hydrophobic excipients (palmitate and deoxycholate), and model hydrophobic anticancer drugs with clinical relevance (carfilzomib and docetaxel). Nile blue (NB) was used as a model SFC dye quenching fluorescence in water yet emitting strong fluorescence in the presence of hydrophobic drugs within PNAs. Drug release kinetics were measured by dialysis- and SFC-based methods, and analyzed by mathematical modeling of free drug, spiked drug, and encapsulated drug release.

Results

The dialysis method overestimated drug remaining in PNAs because it included released drug in measurements, whereas the SFC method successfully distinguished drugs entrapped in PNAs from released in solution and thus provided more accurate drug release patterns. However, mathematical modeling revealed that the dialysis method would be less influenced than the SFC method by hydrophobic excipients modulating drug diffusion within PNAs.

Conclusions

In comparison to the dialysis-based method, the SFC-based method would allow for real-time spectroscopic determination of drug release from PNAs and potentially other nanoparticle drug carriers with improved convenience and accuracy.

KEY WORDS

controlled drug release drug release kinetics mathematical modeling nanoparticles solvatofluorochromism 

Abbreviations

2P

PEG-PEI

2PN

PEG-PEI-NB

3P

PEG-PEI-PAL

3PN

PEG-PEI-PAL-NB

CFZ

Carfilzomib

DOC

Docetaxel

DOCA

Deoxycholic acid

NB

Nile blue

PAL

Palmitic acid

PEG

Poly(ethylene glycol)

PEI

Poly(ethylenimine)

PNAs

Polymer nanoassemblies

SFC

Solvatofluorochromism

TNAs

Tethered polymer nanoassemblies

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

DR acknowledges financial support from the University of Kentucky College of Pharmacy Graduate School Allocated Year (GSAY) Fellowship.

References

  1. 1.
    Reichel D, Lee MJ, Lee W, Kim KB, Bae Y. Tethered polymer nanoassemblies for sustained carfilzomib release and prolonged suppression of proteasome activity. Ther Deliv. 2016;7(10):665–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Dickerson M, Howerton B, Bae Y, Glazer E. Light-sensitive ruthenium complex-loaded cross-linked polymeric nanoassemblies for the treatment of cancer. J Mater Chem B Mater Biol Med. 2016;4:394–408.CrossRefPubMedGoogle Scholar
  3. 3.
    Lee HJ, Bae Y. Pharmaceutical differences between block copolymer self-assembled and cross-linked nanoassemblies as carriers for tunable drug release. Pharm Res. 2013;30(2):478–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Lee HJ, Bae Y. Brushed block copolymer micelles with pH-sensitive pendant groups for controlled drug delivery. Pharm Res. 2013;30(8):2077–86.CrossRefPubMedGoogle Scholar
  5. 5.
    Cao P, Ponta A, Kim JA, Bae Y. Block copolymer crosslinked nanoassemblies co-entrapping acridine yellow and doxorubicin for cancer theranostics. Br J Pharm Res. 2013;3:536–47.CrossRefGoogle Scholar
  6. 6.
    Lee HJ, Ponta A, Bae Y. Polymer nanoassemblies for cancer treatment and imaging. Ther Deliv. 2010;1(6):803–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Curtis LT, Rychahou P, Bae Y, Frieboes HB. A computational/experimental assessment of antitumor activity of polymer nanoassemblies for ph-controlled drug delivery to primary and metastatic tumors. Pharm Res. 2016;33:2552–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Ponta A, Bae Y. Tumor-preferential sustained drug release enhances antitumor activity of block copolymer micelles. J Drug Target. 2014;22(7):619–28.CrossRefPubMedGoogle Scholar
  9. 9.
    Scott D, Bae Y. Block copolymer crosslinked nanoassemblies co-entrapping hydrophobic drugs and lipophilic polymer additives. J Pharm Drug Deliv Res. 2013;2(1000116):1–5.Google Scholar
  10. 10.
    Ponta A, Bae Y. PEG-poly(amino acid) block copolymer micelles for tunable drug release. Pharm Res. 2010;27(11):2330–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Bae Y. Drug delivery systems using polymer nanoassemblies for cancer treatment. Ther Deliv. 2010;1:361–3.CrossRefPubMedGoogle Scholar
  12. 12.
    Howard MD, Ponta A, Eckman AM, Jay M, Bae Y. Polymer micelles with hydrazone-ester dual linkers for tunable release of dexamethasone. Pharm Res. 2011;28:2435–46.CrossRefPubMedGoogle Scholar
  13. 13.
    Eckman AM, Tsakalozou E, Kang NY, Ponta A, Bae Y. Drug release patterns and cytotoxicity of PEG-poly(aspartate) block copolymer micelles in cancer cells. Pharm Res. 2012;29(7):1755–67.CrossRefPubMedGoogle Scholar
  14. 14.
    Dickerson M, Winquist N, Bae Y. Photo-inducible crosslinked nanoassemblies for pH-controlled drug release. Pharm Res. 2014;31(5):1254–63.CrossRefPubMedGoogle Scholar
  15. 15.
    Ao L, Reichel D, Hu D, Jeong H-Y, Kim KB, Bae Y, et al. Polymer micelle formulations of proteasome inhibitor carfilzomib for improved metabolic stability and anti-cancer efficacy in human multiple myeloma and lung cancer cell lines. J Pharmacol Exp Ther. 2015;355:168–73.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee HJ, Bae Y. The effect of core crosslinking degree on drug release patterns of pH-sensitive block copolymer crosslinked nanoassemblies. Nano Bull. 2013;2:1302101–9.Google Scholar
  17. 17.
    Akter S, Clem BF, Lee HJ, Chesney J, Bae Y. Block copolymer micelles for controlled delivery of glycolytic enzyme inhibitors. Pharm Res. 2012;29(3):847–55.CrossRefPubMedGoogle Scholar
  18. 18.
    Scott D, Rohr J, Bae Y. Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity. Int J Nanomed. 2011;6:2757–67.CrossRefGoogle Scholar
  19. 19.
    Ponta A, Akter S, Bae Y. Degradable cross-linked nanoassemblies as drug carriers for heat shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin. Pharmaceuticals. 2011;4:1281–92.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee HJ, Bae Y. Cross-linked nanoassemblies from poly(ethylene glycol)-poly(aspartate) block copolymers as stable supramolecular templates for particulate drug delivery. Biomacromolecules. 2011;12:2686–96.CrossRefPubMedGoogle Scholar
  21. 21.
    Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31(7):1765–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem. 2005;16(1):122–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Ponta A, Fugit KD, Anderson BD, Bae Y. Release, partitioning, and conjugation stability of doxorubicin in polymer micelles determined by mechanistic modeling. Pharm Res. 2015;32(5):1752–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Fugit KD, Xiang TX, du Choi H, Kangarlou S, Csuhai E, Bummer PM, et al. Mechanistic model and analysis of doxorubicin release from liposomal formulations. J Control Release. 2015;217:82–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Wu H, Zhu L, Torchilin VP. pH-sensitive poly(histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 2013;34(4):1213–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Yadav S, Gupta S. Development and in vitro characterization of docetaxel-loaded ligand appended solid fat nanoemulsions for potential use in breast cancer therapy. Artif Cells Nano Biotechnol. 2015;43(2):93–102.CrossRefGoogle Scholar
  27. 27.
    Li J, Guo X, Liu Z, Okeke CI, Li N, Zhao H, et al. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies. Drug Dev Ind Pharm. 2014;40(7):980–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Dickerson M, Winquist N, Bae Y. Photo-inducible cross-linked nanoassemblies for controlled drug delivery. Pharm Res. 2013;31:1254–63.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dickerson M, Bae Y. Block copolymer nanoassemblies for photodynamic therapy and diagnosis. Ther Deliv. 2013;4(11):1431–41.CrossRefPubMedGoogle Scholar
  30. 30.
    Jin G-W, Bae Y. Reductant-dependent none-partial-complete degradation of block copolymer disulfide crosslinked nanoassemblies. J App Pharm Sci. 2013;3:1–6.Google Scholar
  31. 31.
    Bera A, Chandel AKS, Kumar CU, Jewrajka SK. Degradable/cytocompatible and pH responsive amphiphilic conetwork gels based on agarose-graft copolymers and polycaprolactone. J Mater Chem B. 2015;3(43):8548–57.CrossRefGoogle Scholar
  32. 32.
    de Andrade DF, Zuglianello C, Pohlmann AR, Guterres SS, Beck RCR. Assessing the in vitro drug release from lipid-core nanocapsules: a new strategy combining dialysis sac and a continuous-flow system. AAPS PharmSciTech. 2015;16(6):1409–17.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fuchs K, Bize PE, Denys A, Borchard G, Jordan O. Sunitinib-eluting beads for chemoembolization: methods for in vitro evaluation of drug release. Int J Pharm. 2015;482(1):68–74.CrossRefPubMedGoogle Scholar
  34. 34.
    Salmela L, Washington C. A continuous flow method for estimation of drug release rates from emulsion formulations. Int J Pharm. 2014;472(1):276–81.CrossRefPubMedGoogle Scholar
  35. 35.
    Wasik S, Arabski M, Drulis-Kawa Z, Gubernator J. Laser interferometry analysis of ciprofloxacin and ampicillin diffusion from liposomal solutions to water phase. Eur Biophys J. 2013;42(7):549–58.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Li Z, Paulson AT, Gill TA. Encapsulation of bioactive salmon protein hydrolysates with chitosan-coated liposomes. J Funct Foods. 2015;19:733–43.CrossRefGoogle Scholar
  37. 37.
    Gullotti E, Yeo Y. Beyond the imaging: limitations of cellular uptake study in the evaluation of nanoparticles. J Control Release. 2012;164(2):170–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhou Y, He C, Chen K, Ni J, Cai Y, Guo X, et al. A new method for evaluating actual drug release kinetics of nanoparticles inside dialysis devices via numerical deconvolution. J Control Release. 2016;243:11–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Xie L, Beyer S, Vogel V, Wacker MG, Mantele W. Assessing the drug release from nanoparticles: overcoming the shortcomings of dialysis by using novel optical techniques and a mathematical model. Int J Pharm. 2015;488(1):108–19.CrossRefPubMedGoogle Scholar
  40. 40.
    Reichel D, Rychahou P, Bae Y. Polymer nanoassemblies with solvato- and halo-fluorochromic properties for real-time monitoring of drug release and pH-enhanced ex vivo imaging of metastatic tumors. Ther Deliv. 2015;6:1221–37.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cheng Y, Xu T. The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of non-covalently or covalently attached drugs. Eur J Med Chem. 2008;43(11):2291–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Jaimes-Aguirre L, Gibbens-Bandala BV, Morales-Avila E, Ocampo-Garcia BE, Seyedeh-Fatemeh M, Amirhosein A. Polymer-based drug delivery systems, development and pre-clinical status. Curr Pharm Des. 2016;22(19):2886–903.CrossRefPubMedGoogle Scholar
  43. 43.
    Chu KS, Hasan W, Rawal S, Walsh MD, Enlow EM, Luft JC, et al. Plasma, tumor and tissue pharmacokinetics of Docetaxel delivered via nanoparticles of different sizes and shapes in mice bearing SKOV-3 human ovarian carcinoma xenograft. Nanomedicine. 2013;9(5):686–93.PubMedGoogle Scholar
  44. 44.
    Stylianopoulos T, Jain RK. Design considerations for nanotherapeutics in oncology. Nanomedicine. 2015;11(8):1893–907.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Diou O, Greco S, Beltran T, Lairez D, Authelin JR, Bazile D. A method to quantify the affinity of cabazitaxel for PLA-PEG nanoparticles and investigate the influence of the nano-assembly structure on the drug/particle association. Pharm Res. 2015;32(10):3188–200.CrossRefPubMedGoogle Scholar
  46. 46.
    Modi S, Anderson BD. Determination of drug release kinetics from nanoparticles: overcoming pitfalls of the dynamic dialysis method. Mol Pharm. 2013;10(8):3076–89.CrossRefPubMedGoogle Scholar
  47. 47.
    Cao L, Bornscheuer UT, Schmid RD. Lipase-catalyzed solid-phase synthesis of sugar esters. Influence of immobilization on productivity and stability of the enzyme. J Mol Catal B Enzym. 1999;6(3):279–85.CrossRefGoogle Scholar
  48. 48.
    Roda A, Minutello A, Angellotti MA, Fini A. Bile acid structure-activity relationship: evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res. 1990;31(8):1433–43.PubMedGoogle Scholar
  49. 49.
    Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kwon GS, Naito M, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Micelles based on AB block copolymers of poly (ethylene oxide) and poly (. beta.-benzyl L-aspartate). Langmuir. 1993;9(4):945–9.CrossRefGoogle Scholar
  51. 51.
    Luo S, Tao Y, Tang R, Wang R, Ji W, Wang C, et al. Amphiphilic block copolymers bearing six-membered ortho ester ring in side chains as potential drug carriers: synthesis, characterization, and in vivo toxicity evaluation. J Biomater Sci Polym Ed. 2014;25(10):965–84.CrossRefPubMedGoogle Scholar
  52. 52.
    Gillies ER, Jonsson TB, Frechet JM. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc. 2004;126(38):11936–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Duan R, Li C, Liu S, Liu Z, Li Y, Zhu J, et al. A selective fluorescence quenching method for the determination of trace hypochlorite in water samples with nile blue A. J Taiwan Inst Chem Eng. 2015;50:43–8.CrossRefGoogle Scholar
  54. 54.
    Frick AA, Busetti F, Cross A, Lewis SW. Aqueous Nile blue: a simple, versatile and safe reagent for the detection of latent fingermarks. Chem Commun. 2014;50(25):3341–3.CrossRefGoogle Scholar
  55. 55.
    Uchida Y, Maezawa Y, Uchida Y, Hiruta N, Shimoyama E. Molecular imaging of low-density lipoprotein in human coronary plaques by color fluorescent angioscopy and microscopy. Plos One. 2012;7(11):e50678.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fugit KD, Anderson BD. Dynamic, nonsink method for the simultaneous determination of drug permeability and binding coefficients in liposomes. Mol Pharm. 2014;11(4):1314–25.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zambito Y, Pedreschi E, Di Colo G. Pharmaceutical nanotechnology. Int J Pharm. 2012;434(1–2):28–34.CrossRefPubMedGoogle Scholar
  58. 58.
    Hopfner T, Bluma A, Rudolph G, Lindner P, Scheper T. A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng. 2010;33(2):247–56.CrossRefPubMedGoogle Scholar
  59. 59.
    Beutel S, Henkel S. In situ sensor techniques in modern bioprocess monitoring. Appl Microbiol Biotechnol. 2011;91(6):1493–505.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations