Pharmaceutical Research

, Volume 34, Issue 2, pp 301–309 | Cite as

Preparation, Physicochemical Characterization and Anti-fungal Evaluation of Nystatin-Loaded PLGA-Glucosamine Nanoparticles

  • Ghobad Mohammadi
  • Amineh Shakeri
  • Ali Fattahi
  • Pardis Mohammadi
  • Ali Mikaeili
  • Alireza Aliabadi
  • Khosro Adibkia
Research Paper



Nystatin loaded PLGA and PLGA-Glucosamine nanoparticles were formulated. PLGA were functionalized with Glucosamine (PLGA-GlcN) to enhance the adhesion of nanoparticles to Candida Albicans (C.albicans) cell walls.


Quasi-emulsion solvent diffusion method was employed using PLGA and PLGA-GlcN with various drug–polymer ratios for the preparation of nanoparticles. The nanoparticles were evaluated for size, zeta potential, polydispersity index, drug crystallinity, loading efficiency and release properties. DSC, SEM, XRPD, 1H-NMR, and FT-IR were performed to analyze the physicochemical properties of the nanoparticles. Antifungal activity of the nanoparticles was evaluated by determination of MICs against C.albicans.


The spectra of 1H-NMR and FT-IR analysis ensured GlcN functionalization on PLGA nanoparticles. SEM characterization confirmed that particles were in the nanosize range and the particle size for PLGA and PLGA-GlcN nanoparticles were in the range of 108.63 ± 4.5 to 168.8 ± 5.65 nm and 208.76 ± 16.85 nm, respectively. DSC and XRPD analysis ensured reduction of the drug crystallinity in the nanoparticles. PLGA-GlcN nanoparticles exhibit higher antifungal activity than PLGA nanoparticles.


PLGA-GlcN nanoparticles showed more antifungal activity with appropriate physicochemical properties than pure Nystatin and PLGA nanoparticles.


Candida albicans glucosamine nanoparticles nystatin PLGA 


C. albicans

Candida Albicans


Deuterium oxide








Differential scanning calorimetric


Fourier transform infrared spectroscopy




Proton nuclear magnetic resonance


High performance liquid chromatography


Potassium Bromide


Minimum inhibitory concentration


Prediction error


Polyethylene glycol


Poly lactic-co-glycolic acid


PLGA functionalized with Glucosamine


Polyvinyl alcohol


Squared correlation coefficient


Scanning Electron Microscope


Powder X-Ray Diffractometry

Supplementary material

11095_2016_2062_MOESM1_ESM.docx (206 kb)
Supplementary Appendix (DOCX 205 kb)


  1. 1.
    Rosato A, Vitali C, Piarulli M, Mazzotta M, Argentieri MP, Mallamaci R. In vitro synergic efficacy of the combination of Nystatin with the essential oils of Origanum vulgare and Pelargonium graveolens against some Candida species. Phytomedicine. 2009;16(10):972–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Barkvoll P, Attramadal A. Effect of nystatin and chlorhexidine digluconate on Candida albicans. Oral Surg Oral Med Oral Pathol. 1989;67(3):279–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Newman SL, Holly A. Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect Immun. 2001;69(11):6813–22.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Pfaller M, Diekema D, Mendez M, Kibbler C, Erzsebet P, Chang S-C, et al. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J Clin Microbiol. 2006;44(10):3551–6.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet MGG. 1984;198(1):179–82.CrossRefPubMedGoogle Scholar
  6. 6.
    Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru A. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 2013;36(4):407–15.CrossRefPubMedGoogle Scholar
  7. 7.
    He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011;166(3):207–15.CrossRefPubMedGoogle Scholar
  8. 8.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Niemirowicz K, Durnaś B, Tokajuk G, Głuszek K, Wilczewska AZ, Misztalewska I, et al. Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomed: Nanotechnol, Biol Med. 2016;12(8):2395–404.Google Scholar
  10. 10.
    Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, Hussein MZ. Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. Biomed Res Int. 2014;2014.Google Scholar
  11. 11.
    Khalil RM, El Rahman AAA, Kassem MA, El Ridi MS, Samra MMA, Awad GE, et al. Preparation and in vivo assessment of nystatin-loaded solid lipid nanoparticles for topical delivery against cutaneous candidiasis. Int J Med Health Pharm Biomed Eng. 2014;8:401–9.Google Scholar
  12. 12.
    Khalil R, Kassem M, Elbary AA, El Ridi M, AbouSamra M. Preparation and characterization of nystatin-loaded solid lipid nanoparticles for topical delivery. Int J Pharm Sci Res. 2013;4(6):2292.Google Scholar
  13. 13.
    Khalil RM, Abd-Elbary A, Kassem MA, El Ridy MS, Samra MMA, Awad GE, et al. Formulation and characterization of nystatin-loaded nanostructured lipid carriers for topical delivery against cutaneous Candidiasis. Br J Pharm Res. 2014;4(4):490.CrossRefGoogle Scholar
  14. 14.
    Melkoumov A, Goupil M, Louhichi F, Raymond M, de Repentigny L, Leclair G. Nystatin nanosizing enhances in vitro and in vivo antifungal activity against Candida albicans. J Antimicrob Chemother. 2013;dkt137.Google Scholar
  15. 15.
    Monteiro DR, Silva S, Negri M, Gorup LF, Camargo ER, Oliveira R, et al. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses. 2013;56(6):672–80.CrossRefPubMedGoogle Scholar
  16. 16.
    Shahrestani FF, Karazmodeh Z, Dolatabadi NM, Habibpour M, Talebi B, Aghajani J, et al. Nystatin Candida Albicans drug loading by electrospinning: preparation and characterization. Int J Adv Biol Biomed Res. 2016;4(2):220–7.Google Scholar
  17. 17.
    Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med. 2006;2(1):8–21.CrossRefGoogle Scholar
  18. 18.
    Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.CrossRefPubMedGoogle Scholar
  20. 20.
    Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331(2):153–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Lee MA. Nanoparticle-ligand conjugations for targeted drug delivery: processing and applications. 2013.Google Scholar
  22. 22.
    Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC. Biofunctionalized targeted nanoparticles for therapeutic applications. 2008.Google Scholar
  23. 23.
    Kumar Khanna V. Targeted delivery of nanomedicines. ISRN pharmacology. 2012;2012.Google Scholar
  24. 24.
    Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release. 2006;114(3):277–87.CrossRefPubMedGoogle Scholar
  25. 25.
    Veerapandian M, Lim SK, Nam HM, Kuppannan G, Yun KS. Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal Bioanal Chem. 2010;398(2):867–76.CrossRefPubMedGoogle Scholar
  26. 26.
    Veerapandian M, Sadhasivam S, Choi J, Yun K. Glucosamine functionalized copper nanoparticles: preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation. Chem Eng J. 2012;209:558–67.CrossRefGoogle Scholar
  27. 27.
    Govindaraju S, Ramasamy M, Baskaran R, Ahn SJ, Yun K. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles. Int J Nanomedicine. 2015;10:67.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–74.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marimuthu M, Bennet D, Kim S. Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polym J. 2013;45(2):202–9.CrossRefGoogle Scholar
  30. 30.
    Hou S, McCauley LK, Ma PX. Synthesis and erosion properties of PEG‐containing polyanhydrides. Macromol Biosci. 2007;7(5):620–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu H, Zhu H, Zhuang J, Yang S, Liu C, Cao YC. Water‐soluble nanocrystals through dual‐interaction ligands. Angew Chem Int Ed. 2008;47(20):3730–4.CrossRefGoogle Scholar
  32. 32.
    Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, et al. Development of azithromycin–PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B: Biointerfaces. 2010;80(1):34–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157(3):383–90.CrossRefPubMedGoogle Scholar
  34. 34.
    Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.CrossRefPubMedGoogle Scholar
  35. 35.
    Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–29.CrossRefPubMedGoogle Scholar
  36. 36.
    Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, et al. Structure-function engineering of interferon-β-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem. 2006;17(3):618–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.CrossRefPubMedGoogle Scholar
  38. 38.
    RamaRao B, RamanaRao G, Avadhanulu A. Polymorphism in drugs and its significance in therapeutics. J Sci Ind Res. 1987;46.Google Scholar
  39. 39.
    Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective aerosol formulation in pulmonary diseases. J Nanobiotechnol. 2012;10(1):20–35.CrossRefGoogle Scholar
  40. 40.
    Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm. 2013;81(2):591.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids Surf B: Biointerfaces. 2010;81(2):498–502.CrossRefPubMedGoogle Scholar
  42. 42.
    Li Y-P, Pei Y-Y, Zhang X-Y, Gu Z-H, Zhou Z-H, Yuan W-F, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release. 2001;71(2):203–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Salah SM. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: Optimization of the formulation variables. J Pharm Res Opin;3(11).Google Scholar
  44. 44.
    Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1158–64.CrossRefGoogle Scholar
  45. 45.
    Jafari-Aghdam N, Adibkia K, Payab S, Barzegar-Jalali M, Parvizpur A, Mohammadi G, Sabzevari A. Methylprednisolone acetate-Eudragit® RS100 electrospuns: preparation and physicochemical characterization. Artif Cells Nanomed Biotechnol. 2014:1–7.Google Scholar
  46. 46.
    Cunha-Azevedo EP, Silva JR, Martins OP, Siqueira-Moura MP, Bocca AL, Felipe MSS, et al. In vitro antifungal activity and toxicity of itraconazole in DMSA-PLGA nanoparticles. J Nanosci Nanotechnol. 2011;11(3):2308–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Tang X, Jiao R, Xie C, Xu L, Huo Z, Dai J, et al. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int J Clin Exp Med. 2015;8(4):5150.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ghobad Mohammadi
    • 1
    • 2
  • Amineh Shakeri
    • 3
  • Ali Fattahi
    • 1
  • Pardis Mohammadi
    • 1
  • Ali Mikaeili
    • 4
  • Alireza Aliabadi
    • 5
  • Khosro Adibkia
    • 6
  1. 1.Novel Drug Delivery Research Center, Faculty of PharmacyKermanshah University of Medical Sciences,KermanshahIran
  2. 2.Faculty of PharmacyKermanshah University of Medical SciencesKermanshahIran
  3. 3.Student Research CommitteeKermanshah University of Medical Sciences,KermanshahIran
  4. 4.Faculty of MedicineKermanshah University of Medical SciencesKermanshahIran
  5. 5.Department of Medicinal Chemistry, Faculty of PharmacyKermanshah University of Medical Sciences,KermanshahIran
  6. 6.Faculty of PharmacyTabriz University of Medical Sciences,TabrizIran

Personalised recommendations