Skip to main content
Log in

Preparation, Physicochemical Characterization and Anti-fungal Evaluation of Nystatin-Loaded PLGA-Glucosamine Nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Nystatin loaded PLGA and PLGA-Glucosamine nanoparticles were formulated. PLGA were functionalized with Glucosamine (PLGA-GlcN) to enhance the adhesion of nanoparticles to Candida Albicans (C.albicans) cell walls.

Method

Quasi-emulsion solvent diffusion method was employed using PLGA and PLGA-GlcN with various drug–polymer ratios for the preparation of nanoparticles. The nanoparticles were evaluated for size, zeta potential, polydispersity index, drug crystallinity, loading efficiency and release properties. DSC, SEM, XRPD, 1H-NMR, and FT-IR were performed to analyze the physicochemical properties of the nanoparticles. Antifungal activity of the nanoparticles was evaluated by determination of MICs against C.albicans.

Results

The spectra of 1H-NMR and FT-IR analysis ensured GlcN functionalization on PLGA nanoparticles. SEM characterization confirmed that particles were in the nanosize range and the particle size for PLGA and PLGA-GlcN nanoparticles were in the range of 108.63 ± 4.5 to 168.8 ± 5.65 nm and 208.76 ± 16.85 nm, respectively. DSC and XRPD analysis ensured reduction of the drug crystallinity in the nanoparticles. PLGA-GlcN nanoparticles exhibit higher antifungal activity than PLGA nanoparticles.

Conclusion

PLGA-GlcN nanoparticles showed more antifungal activity with appropriate physicochemical properties than pure Nystatin and PLGA nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

C. albicans:

Candida Albicans

D2O:

Deuterium oxide

DCM:

Dichloromethane

DMAP:

4-Dimethylaminopyridine

DMSO:

Dimethylsulfoxide

DSC:

Differential scanning calorimetric

FT-IR:

Fourier transform infrared spectroscopy

GlcN:

Glucosamine

H-NMR:

Proton nuclear magnetic resonance

HPLC:

High performance liquid chromatography

KBr:

Potassium Bromide

MIC:

Minimum inhibitory concentration

PE:

Prediction error

PEG:

Polyethylene glycol

PLGA:

Poly lactic-co-glycolic acid

PLGA-GlcN:

PLGA functionalized with Glucosamine

PVA:

Polyvinyl alcohol

RSQ:

Squared correlation coefficient

SEM:

Scanning Electron Microscope

XRPD:

Powder X-Ray Diffractometry

REFERENCES

  1. Rosato A, Vitali C, Piarulli M, Mazzotta M, Argentieri MP, Mallamaci R. In vitro synergic efficacy of the combination of Nystatin with the essential oils of Origanum vulgare and Pelargonium graveolens against some Candida species. Phytomedicine. 2009;16(10):972–5.

    Article  CAS  PubMed  Google Scholar 

  2. Barkvoll P, Attramadal A. Effect of nystatin and chlorhexidine digluconate on Candida albicans. Oral Surg Oral Med Oral Pathol. 1989;67(3):279–81.

    Article  CAS  PubMed  Google Scholar 

  3. Newman SL, Holly A. Candida albicans is phagocytosed, killed, and processed for antigen presentation by human dendritic cells. Infect Immun. 2001;69(11):6813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pfaller M, Diekema D, Mendez M, Kibbler C, Erzsebet P, Chang S-C, et al. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J Clin Microbiol. 2006;44(10):3551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet MGG. 1984;198(1):179–82.

    Article  CAS  PubMed  Google Scholar 

  6. Singh M, Kumar M, Kalaivani R, Manikandan S, Kumaraguru A. Metallic silver nanoparticle: a therapeutic agent in combination with antifungal drug against human fungal pathogen. Bioprocess Biosyst Eng. 2013;36(4):407–15.

    Article  CAS  PubMed  Google Scholar 

  7. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011;166(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  8. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  9. Niemirowicz K, Durnaś B, Tokajuk G, Głuszek K, Wilczewska AZ, Misztalewska I, et al. Magnetic nanoparticles as a drug delivery system that enhance fungicidal activity of polyene antibiotics. Nanomed: Nanotechnol, Biol Med. 2016;12(8):2395–404.

    CAS  Google Scholar 

  10. Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, Hussein MZ. Antimicrobial and controlled release studies of a novel nystatin conjugated iron oxide nanocomposite. Biomed Res Int. 2014;2014.

  11. Khalil RM, El Rahman AAA, Kassem MA, El Ridi MS, Samra MMA, Awad GE, et al. Preparation and in vivo assessment of nystatin-loaded solid lipid nanoparticles for topical delivery against cutaneous candidiasis. Int J Med Health Pharm Biomed Eng. 2014;8:401–9.

    Google Scholar 

  12. Khalil R, Kassem M, Elbary AA, El Ridi M, AbouSamra M. Preparation and characterization of nystatin-loaded solid lipid nanoparticles for topical delivery. Int J Pharm Sci Res. 2013;4(6):2292.

    CAS  Google Scholar 

  13. Khalil RM, Abd-Elbary A, Kassem MA, El Ridy MS, Samra MMA, Awad GE, et al. Formulation and characterization of nystatin-loaded nanostructured lipid carriers for topical delivery against cutaneous Candidiasis. Br J Pharm Res. 2014;4(4):490.

    Article  Google Scholar 

  14. Melkoumov A, Goupil M, Louhichi F, Raymond M, de Repentigny L, Leclair G. Nystatin nanosizing enhances in vitro and in vivo antifungal activity against Candida albicans. J Antimicrob Chemother. 2013;dkt137.

  15. Monteiro DR, Silva S, Negri M, Gorup LF, Camargo ER, Oliveira R, et al. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicans and Candida glabrata biofilms. Mycoses. 2013;56(6):672–80.

    Article  CAS  PubMed  Google Scholar 

  16. Shahrestani FF, Karazmodeh Z, Dolatabadi NM, Habibpour M, Talebi B, Aghajani J, et al. Nystatin Candida Albicans drug loading by electrospinning: preparation and characterization. Int J Adv Biol Biomed Res. 2016;4(2):220–7.

    Google Scholar 

  17. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med. 2006;2(1):8–21.

    Article  CAS  Google Scholar 

  18. Cui F, Shi K, Zhang L, Tao A, Kawashima Y. Biodegradable nanoparticles loaded with insulin–phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 2006;114(2):242–50.

    Article  CAS  PubMed  Google Scholar 

  19. Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (D, L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release. 2002;82(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  20. Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331(2):153–9.

    Article  PubMed  Google Scholar 

  21. Lee MA. Nanoparticle-ligand conjugations for targeted drug delivery: processing and applications. 2013.

  22. Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, Farokhzad OC. Biofunctionalized targeted nanoparticles for therapeutic applications. 2008.

  23. Kumar Khanna V. Targeted delivery of nanomedicines. ISRN pharmacology. 2012;2012.

  24. Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. J Control Release. 2006;114(3):277–87.

    Article  CAS  PubMed  Google Scholar 

  25. Veerapandian M, Lim SK, Nam HM, Kuppannan G, Yun KS. Glucosamine-functionalized silver glyconanoparticles: characterization and antibacterial activity. Anal Bioanal Chem. 2010;398(2):867–76.

    Article  CAS  PubMed  Google Scholar 

  26. Veerapandian M, Sadhasivam S, Choi J, Yun K. Glucosamine functionalized copper nanoparticles: preparation, characterization and enhancement of anti-bacterial activity by ultraviolet irradiation. Chem Eng J. 2012;209:558–67.

    Article  CAS  Google Scholar 

  27. Govindaraju S, Ramasamy M, Baskaran R, Ahn SJ, Yun K. Ultraviolet light and laser irradiation enhances the antibacterial activity of glucosamine-functionalized gold nanoparticles. Int J Nanomedicine. 2015;10:67.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marimuthu M, Bennet D, Kim S. Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polym J. 2013;45(2):202–9.

    Article  CAS  Google Scholar 

  30. Hou S, McCauley LK, Ma PX. Synthesis and erosion properties of PEG‐containing polyanhydrides. Macromol Biosci. 2007;7(5):620–8.

    Article  CAS  PubMed  Google Scholar 

  31. Wu H, Zhu H, Zhuang J, Yang S, Liu C, Cao YC. Water‐soluble nanocrystals through dual‐interaction ligands. Angew Chem Int Ed. 2008;47(20):3730–4.

    Article  CAS  Google Scholar 

  32. Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, et al. Development of azithromycin–PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B: Biointerfaces. 2010;80(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  33. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  34. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.

    Article  CAS  PubMed  Google Scholar 

  35. Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22(5):315–29.

    Article  CAS  PubMed  Google Scholar 

  36. Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, et al. Structure-function engineering of interferon-β-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug Chem. 2006;17(3):618–30.

    Article  CAS  PubMed  Google Scholar 

  37. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2(3):214–21.

    Article  CAS  PubMed  Google Scholar 

  38. RamaRao B, RamanaRao G, Avadhanulu A. Polymorphism in drugs and its significance in therapeutics. J Sci Ind Res. 1987;46.

  39. Pirooznia N, Hasannia S, Lotfi AS, Ghanei M. Encapsulation of alpha-1 antitrypsin in PLGA nanoparticles: in vitro characterization as an effective aerosol formulation in pulmonary diseases. J Nanobiotechnol. 2012;10(1):20–35.

    Article  CAS  Google Scholar 

  40. Mudgil M, Pawar PK. Preparation and in vitro/ex vivo evaluation of moxifloxacin-loaded PLGA nanosuspensions for ophthalmic application. Sci Pharm. 2013;81(2):591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen–PLGA nanoparticles. Colloids Surf B: Biointerfaces. 2010;81(2):498–502.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y-P, Pei Y-Y, Zhang X-Y, Gu Z-H, Zhou Z-H, Yuan W-F, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. J Control Release. 2001;71(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  43. Salah SM. Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: Optimization of the formulation variables. J Pharm Res Opin;3(11).

  44. Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr Polym. 2011;84(3):1158–64.

    Article  CAS  Google Scholar 

  45. Jafari-Aghdam N, Adibkia K, Payab S, Barzegar-Jalali M, Parvizpur A, Mohammadi G, Sabzevari A. Methylprednisolone acetate-Eudragit® RS100 electrospuns: preparation and physicochemical characterization. Artif Cells Nanomed Biotechnol. 2014:1–7.

  46. Cunha-Azevedo EP, Silva JR, Martins OP, Siqueira-Moura MP, Bocca AL, Felipe MSS, et al. In vitro antifungal activity and toxicity of itraconazole in DMSA-PLGA nanoparticles. J Nanosci Nanotechnol. 2011;11(3):2308–14.

    Article  CAS  PubMed  Google Scholar 

  47. Tang X, Jiao R, Xie C, Xu L, Huo Z, Dai J, et al. Improved antifungal activity of amphotericin B-loaded TPGS-b-(PCL-ran-PGA) nanoparticles. Int J Clin Exp Med. 2015;8(4):5150.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghobad Mohammadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Appendix

(DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, G., Shakeri, A., Fattahi, A. et al. Preparation, Physicochemical Characterization and Anti-fungal Evaluation of Nystatin-Loaded PLGA-Glucosamine Nanoparticles. Pharm Res 34, 301–309 (2017). https://doi.org/10.1007/s11095-016-2062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2062-6

KEY WORDS

Navigation