Skip to main content

Advertisement

Log in

Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The inhibition of myostatin - a member of the transforming growth factor (TGF–β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need.

Methods

A protease cleavable linker (PCL) – responding to MMP upregulation – is attached to the MI and site-specifically immobilized on microparticle surfaces.

Results

The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation.

Conclusions

We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels.

Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ActRIIB:

Activin receptor IIB

au:

Arbitrary units

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

CuAAC:

Copper(I)-catalyzed azide-alkyne cycloaddition

DBCO:

Dibenzocyclooctyne

DDS:

Drug delivery system

DM:

Differentiation medium

DMD:

Duchenne muscular dystrophy

ECM:

Extracellular matrix

EDC:

1-Ethyl-3-(3dimethylaminopropyl)carbodiimide

Fmoc:

N-α-(9-Fluorenylmethyloxycarbonyl)

GDF-8:

Growth differentiation factor 8

HPLC:

High-performance liquid chromatography

IGF-I:

Insulin-like growth factor I

IL-1β:

Interleukin 1β

MALDI-MS:

Matrix-assisted laser desorption ionization mass spectrometry

MI:

Myostatin inhibitor

MMP:

Matrix metalloproteinase

MSTN:

Myostatin

MyHC:

Myosin heavy chain

NF-kB:

Nuclear factor-kappa B

NHS:

N-hydroxysuccinimide

PCL:

Protease cleavable linker

PEG:

Polyethylene glycol

PMMA:

Poly(methyl methacrylate)

RLU:

Relative light unit

RT-PCR:

Real time polymerase chain reaction

SBE:

SMAD binding element

SC:

Satellite cell

SPAAC:

Strain-promoted azide-alkyne cycloaddition

SPPS:

Solid phase peptide synthesis

TG:

Transglutaminase (human, fXIIIa)

TGF–β:

Transforming growth factor beta

THPTA:

Tris(3-hydroxypropyltriazolylmethyl)amine

TNF-α:

Tumor necrosis factor α

References

  1. Roubenoff R, Hughes VA. Sarcopenia: current concepts. J Gerontol Ser Biol Sci Med Sci. 2000;55(12):M716–24.

    Article  CAS  Google Scholar 

  2. Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol. 2014;49(1):59–68.

    Article  CAS  PubMed  Google Scholar 

  3. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Phys Cell Phys. 2009;296(6):C1258–70.

    Article  CAS  Google Scholar 

  4. Cohen S, Nathan JA, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov. 2015;14(1):58–74.

    Article  CAS  PubMed  Google Scholar 

  5. Tsuchida K, Nakatani M, Ueztjmi A, Murakami T, Cui XL. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J. 2008;55(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  6. Sriram S, Subramanian S, Juvvuna PK, Ge X, Lokireddy S, McFarlane CD, et al. Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle. Mol Endocrinol. 2014;28(3):317–30.

    Article  PubMed  Google Scholar 

  7. Yamaki T, Wu C-L, Gustin M, Lim J, Jackman RW, Kandarian SC. Rel A/p65 is required for cytokine-induced myotube atrophy. Am J Phys Cell Phys. 2012;303(2):C135–42.

    Article  CAS  Google Scholar 

  8. Reid MB, Li YP. Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res. 2001;2(5):269–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, Hartmann S, et al. An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol. 2014;34(4):606–18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen J-P. Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab. 2009;297(1):E157–64.

    Article  CAS  PubMed  Google Scholar 

  11. Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB, et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skelet Muscle. 2015;5.

  12. Han H, Min H, Boone TC, inventors; Amgen Inc, assignee. Binding agents which inhibit myostatin patent #1581649, Priority claimed as of 20.12.02/USP435923. Apr 19 2011.

  13. Schoser BGH, Blottner D, Stuerenburg HJ. Matrix metalloproteinases in inflammatory myopathies: enhanced immunoreactivity near atrophic myofibers. Acta Neurol Scand. 2002;105(4):309–13.

    Article  CAS  PubMed  Google Scholar 

  14. Fukushima K, Nakamura A, Ueda H, Yuasa K, Yoshida K, Takeda Si, et al. Activation and localization of matrix metalloproteinase-2 and-9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ). Bmc Musculoskeletal Disorders. 2007;8.

  15. Brenner DA, Ohara M, Angel P, Chojkier M, Karin M. Prolonged activation of jun and collagenase genes by tumor-necrosis factor-alpha. Nature. 1989;337(6208):661–3.

    Article  CAS  PubMed  Google Scholar 

  16. Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdiere-Sahuque M, et al. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol. 1999;205(1):158–70.

    Article  CAS  PubMed  Google Scholar 

  17. McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L, et al. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci. 2005;118(15):3531–41.

    Article  CAS  PubMed  Google Scholar 

  18. Nadarajah VD, van Putten M, Chaouch A, Garrood P, Straub V, Lochmueller H, et al. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD). Neuromuscul Disord. 2011;21(8):569–78.

    Article  CAS  PubMed  Google Scholar 

  19. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A. 2003;100(9):5413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Steinhagen M, Hoffmeister P-G, Nordsieck K, Hoetzel R, Baumann L, Hacker MC, et al. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1 alpha (SDF-1 alpha) from surface modified polymer films. ACS Appl Mater Interfaces. 2014;6(8):5891–9.

    Article  CAS  PubMed  Google Scholar 

  21. van Rijt SH, Boeluekbas DA, Argyo C, Datz S, Lindner M, Eickelberg O, et al. Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano. 2015;9(3):2377–89.

    Article  PubMed  Google Scholar 

  22. Pompe T, Salchert K, Alberti K, Zandstra P, Werner C. Immobilization of growth factors on solid supports for the modulation of stem cell fate. Nat Protoc. 2010;5(6):1042–50.

    Article  CAS  PubMed  Google Scholar 

  23. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  24. Zhao H, Heusler E, Jones G, Li L, Werner V, Germershaus O, et al. Decoration of silk fibroin by click chemistry for biomedical application. J Struct Biol. 2014;186(3):420–30.

    Article  CAS  PubMed  Google Scholar 

  25. Luehmann T, Jones G, Gutmann M, Rybak J-C, Nickel J, Rubini M, et al. Bio-orthogonal immobilization of fibroblast growth factor 2 for spatial controlled cell proliferation. ACS Biomater Sci Eng. 2015;1(9):740–6.

    Article  CAS  Google Scholar 

  26. Eger S, Scheffner M, Marx A, Rubini M. Synthesis of defined ubiquitin dimers. J Am Chem Soc. 2010;132(46):16337–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gutmann M, Memmel E, Braun AC, Seibel J, Meinel L, Lühmann T. Biocompatible azide–alkyne “click” reactions for surface decoration of glyco-engineered cells. ChemBioChem. 2016;17(9):866–75.

    Article  CAS  PubMed  Google Scholar 

  28. Coin I, Beyermann M, Bienert M. Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc. 2007;2(12):3247–56.

    Article  CAS  PubMed  Google Scholar 

  29. Schense JC, Hubbell JA. Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem. 1999;10(1):75–81.

    Article  CAS  PubMed  Google Scholar 

  30. Nagase H, Fields GB. Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers. 1996;40(4):399–416.

    Article  CAS  PubMed  Google Scholar 

  31. Alland C, Moreews F, Boens D, Carpentier M, Chiusa S, Lonquety M, et al. RPBS: a web resource for structural bioinformatics. Nucleic Acids Res. 2005;33:W44–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.

    Article  CAS  PubMed  Google Scholar 

  33. Schagger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1(1):16–22.

    Article  PubMed  Google Scholar 

  34. Jonk LJC, Itoh S, Heldin CH, ten Dijke P, Kruijer W. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem. 1998;273(33):21145–52.

    Article  CAS  PubMed  Google Scholar 

  35. Ebert R, Jovanovic M, Ulmer M, Schneider D, Meissner-Weigl J, Adamski J, et al. Down-regulation by nuclear factor kappa B of human 25-hydroxyvitamin D-3 1 alpha-hydroxylase promoter. Mol Endocrinol. 2004;18(10):2440–50.

    Article  CAS  PubMed  Google Scholar 

  36. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–8.

    Article  CAS  PubMed  Google Scholar 

  37. O’Connell JP, Willenbrock F, Docherty AJP, Eaton D, Murphy G. Analysis of the role of the COOH-terminal domain in the activation, proteolytic activity, and tissue inhibitor of metalloproteinase interactions of gelatinase B. J Biol Chem. 1994;269(21):14967–73.

    PubMed  Google Scholar 

  38. Staros JV, Wright RW, Swingle DM. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem. 1986;156(1):220–2.

    Article  CAS  PubMed  Google Scholar 

  39. Lienemann PS, Karlsson M, Sala A, Wischhusen HM, Weber FE, Zimmermann R, et al. A versatile approach to engineering biomolecule-presenting cellular microenvironments. Adv Healthcare Mater. 2013;2(2):292–6.

    Article  CAS  Google Scholar 

  40. Luehmann T, Haenseler P, Grant B, Hall H. The induction of cell alignment by covalently immobilized gradients of the 6th Ig-like domain of cell adhesion molecule L1 in 3D-fibrin matrices. Biomaterials. 2009;30(27):4503–12.

    Article  CAS  Google Scholar 

  41. Huisgen R. Kinetics and mechanism of 1,3-dipolar cycloadditions. Angew Chem Int Ed Engl. 1963;2(11):633–45.

    Article  Google Scholar 

  42. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted 3 + 2 azide-alkyne cycloaddition for covalent modification of blomolecules in living systems. J Am Chem Soc. 2004;126(46):15046–7.

    Article  CAS  PubMed  Google Scholar 

  43. Lutz J-F, Zarafshani Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide-alkyne “click” chemistry. Adv Drug Deliv Rev. 2008;60(9):958–70.

    Article  CAS  PubMed  Google Scholar 

  44. Debets MF, van Berkel SS, Schoffelen S, Rutjes FPJT, van Hest JCM, van Delft FL. Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun. 2010;46(1):97–9.

    Article  CAS  Google Scholar 

  45. Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–38.

    Article  PubMed  Google Scholar 

  46. Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER. Role of IGF-I signaling in muscle bone interactions. Bone. 2015;80:79–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bursac N, Juhas M, Rando TA. Synergizing engineering and biology to treat and model skeletal muscle injury and disease. In: Yarmush ML, editor. Annual review of biomedical engineering, Vol 17. Annual Review of Biomedical Engineering. 172015. p. 217–42.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Petra Knaus (Freie Universität Berlin, Germany) for providing us with the pGl3ti-SBE constructs and Melanie Krug for excellent technical assistance. We thank Dr. Joachim Nickel for providing C2C12 myoblast cells. The financial support of the Bavarian research foundation (grant # AZ-1044-12 ‘FORMOsA’) and the Deutsche Forschungsgemeinschaft (DFG; ME 3820/3-1) are gratefully acknowledged. H.G. is full time associate of Gilyos GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Meinel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braun, A.C., Gutmann, M., Ebert, R. et al. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors. Pharm Res 34, 58–72 (2017). https://doi.org/10.1007/s11095-016-2038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2038-6

KEY WORDS

Navigation