Pharmaceutical Research

, Volume 33, Issue 7, pp 1552–1563 | Cite as

An In Vitro Thrombolysis Study Using a Mixture of Fast-Acting and Slower Release Microspheres

Research Paper



To test the hypothesis that a mixture combining fast and slower release rate microspheres can restore blood flow rapidly and prevent formation of another blockage in thrombolysis.


We used polyethylene glycol (PEG) microspheres which provide the release of the encapsulated streptokinase (SK) on the scale of minutes, and Eudragit FS30D (Eud), a polymethacrylate polymer, for development of delayed release microspheres which were desirable to prevent a putative second thrombus. Eud microspheres were coated with chitosan (CS) to further extend half-life. Experiments included the development, characterization of Eud/SK and CS-Eud/SK microspheres, and in vitro thrombolytic studies of the mixtures of PEG/SK and Eud /SK microspheres and of PEG/SK and CS-Eud/SK microspheres.


CS-Eud/SK microspheres have slightly lower encapsulation efficiency, reduced activity of SK, and a much slower release of SK when compared with microspheres of Eud/SK microspheres. Counter-intuitively, slower release leads to faster thrombolysis after reocclusion as a result of greater retention of agent and the mechanism of distributed intraclot thrombolysis.


A mixture of PEG/SK and CS-Eud/SK microspheres could break up the blood clot rapidly while providing clot-lytic efficacy in prevention of a second blockage up to 4 h.


chitosan encapsulation eudragit reocclusion thrombolysis 







Encapsulation efficiency


Eudragit FS30D


Fourier transform infrared


2-(N-morpholino)ethanesulfonic acid




Plasminogen activator


Plasminogen activator inhibitor


Phosphate-buffered saline


Polyethylene glycol


Platelet-poor plasma


Platelet-rich plasma


Poly(vinyl alcohol)


Scanning electron microscope




Transmission electron microscope


Tissue-type plasminogen activator



The authors gratefully acknowledge Dr. Preston Larson and Greg Strout from the Samuel Roberts Noble Electron Microscopy Laboratory at the University of Oklahoma for technical assistance with the SEM and TEM experiments. We are also grateful to Evonic Röhm for supplying Eudragit FS30D.


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics-2014 update: a report from the American Heart Association. Circulation. 2014;129:E28–292.CrossRefPubMedGoogle Scholar
  2. 2.
    Vaidya B, Agrawal GP, Vyas SP. Functionalized carriers for the improved delivery of plasminogen activators. Int J Pharm. 2012;424:1–11.CrossRefPubMedGoogle Scholar
  3. 3.
    Kunamneni A, Abdelghani TTA, Ellaiah P. Streptokinase—the drug of choice for thrombolytic therapy. J Thromb Thrombolysis. 2007;23:9–23.CrossRefPubMedGoogle Scholar
  4. 4.
    Anand S, Kudallur V, Pitman EB, Diamond SL. Mechanisms by which thrombolytic therapy results in nonuniform lysis and residual thrombus after reperfusion. Ann Biomed Eng. 1997;25:964–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Gyongyosi M, Wexberg P, Kiss K, Yang P, Sperker W, Sochor H, et al. Adaptive remodeling of the infarct-related artery is associated with recurrent ischemic events after thrombolysis in acute myocardial infarction. Coron Artery Dis. 2001;12:167–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Ohman EM, Califf RM, Topol EJ, Candela R, Abbottsmith C, Ellis S, et al. Consequences of reocclusion after successful reperfusion therapy in acute myocardial-infarction. Circulation. 1990;82:781–91.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang SS, Chou NK, Chung TW. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study. J Biomed Mater Res A. 2009;91A:753–61.CrossRefGoogle Scholar
  8. 8.
    Vaidya B, Nayak MK, Dash D, Agrawal GP, Vyas SP. Development and characterization of site specific target sensitive liposomes for the delivery of thrombolytic agents. Int J Pharm. 2011;403:254–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Leach JK, Patterson E, O’Rear EA. Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost. 2004;2:1548–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Khoobehi Band Peyman GA. Accelerated thrombolysis and reperfusion in a primate model of branch vein occlusion by liposomal encapsulation of streptokinase. Invest Ophthalmol Vis Sci. 1997;38:4879.Google Scholar
  11. 11.
    Leach JK, O’Rear EA, Patterson E, Miao P, Johnson AE. Accelerated thrombolysis in a rabbit model of carotid artery thrombosis with liposome-encapsulated and microencapsulated streptokinase. Thromb Haemost. 2003;90:64–70.PubMedGoogle Scholar
  12. 12.
    Chung TW, Wang SS, Tsai WJ. Accelerating thrombolysis with chitosan-coated plasminogen activators encapsulated in poly-(lactide-co-glycolide) (PLGA) nanoparticles. Biomaterials. 2008;29:228–37.CrossRefPubMedGoogle Scholar
  13. 13.
    Mukhametova LI, Aisina RB, Tyupa DV, Medvedeva AS, Gershkovich KB. Properties of streptokinase incorporated into polyethylene glycol microcapsules. Russ J Bioorg Chem. 2013;39:390–6.CrossRefGoogle Scholar
  14. 14.
    Absar S, Nahar K, Kwon YM, Ahsan F. Thrombus-targeted nanocarrier attenuates bleeding complications associated with conventional thrombolytic therapy. Pharm Res. 2013;30:1663–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Bi F, Zhang J, Su YJ, Tang YC, Liu JN. Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials. 2009;30:5125–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang HW, Hua MY, Lin KJ, Wey SP, Tsai RY, Wu SY, et al. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis. Int J Nanomed. 2012;7:5159–73.Google Scholar
  17. 17.
    Smith DAB, Vaidya SS, Kopechek JA, Huang S-L, Klegerman ME, McPherson DD, et al. Ultrasound-triggered release of recombinant tissue-type plasminogen activator from echogenic liposomes. Ultrasound Med Biol. 2010;36:145–57.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Uesugi Y, Kawata H, Jo J, Saito Y, Tabata Y. An ultrasound-responsive nano delivery system of tissue-type plasminogen activator for thrombolytic therapy. J Control Release. 2010;147:269–77.CrossRefPubMedGoogle Scholar
  19. 19.
    Torno MD, Kaminski MD, Xie Y, Meyers RE, Mertz CJ, Liu X, et al. Improvement of in vitro thrombolysis employing magnetically-guided microspheres. Thromb Res. 2008;121:799–811.CrossRefPubMedGoogle Scholar
  20. 20.
    Korin N, Kanapathipillai M, Matthews BD, Crescente M, Brill A, Mammoto T, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science. 2012;337:738–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Nguyen PD, Orear EA, Johnson AE, Patterson E, Whitsett TL, Bhakta R. Accelerated thrombolysis and reperfusion in a canine model of myocardial-infarction by liposomal encapsulation of streptokinase. Circ Res. 1990;66:875–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Piras AM, Chiellini F, Fiumi C, Bartoli C, Chiellini E, Fiorentino B, et al. A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. Int J Pharm. 2008;357:260–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Holt B, Sen Gupta A. Streptokinase loading in liposomes for vascular targeted nanomedicine applications: encapsulation efficiency and effects of processing. J Biomater Appl. 2012;26:509–27.CrossRefPubMedGoogle Scholar
  24. 24.
    Kim JY, Kim JK, Park JS, Byun Y, Kim CK. The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator. Biomaterials. 2009;30:5751–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Marder VJ, Sherry S. Thrombolytic therapy: current status. N Engl J Med. 1988;318:1512–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Leach JK, Patterson E, O’Rear EA. Encapsulation of a plasminogen activator speeds reperfusion, lessens infarct and reduces blood loss in a canine model of coronary artery thrombosis. Thromb Haemost. 2004;91:1213–8.PubMedGoogle Scholar
  27. 27.
    Dvorackova K, Rabiskova M, Muselik J, Gajdziok J, Bajerova M. Coated hard capsules as the pH-dependent drug transport systems to ileo-colonic compartment. Drug Dev Ind Pharm. 2011;37:1131–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. Int J Pharm. 2004;274:1–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang D, Sun P, Li P, Xue A, Zhang X, Zhang H, et al. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guerin in the treatment of bladder cancer. Biomaterials. 2013;34:10258–66.CrossRefPubMedGoogle Scholar
  30. 30.
    Guo HJ, Zhang DR, Li CY, Jia LJ, Liu GP, Hao LL, et al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm. 2013;458:31–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Chicatun F, Pedraza CE, Muja N, Ghezzi CE, McKee MD, Nazhat SN. Effect of chitosan incorporation and scaffold geometry on chondrocyte function in dense collagen type I hydrogels. Tissue Eng A. 2013;19:2553–64.CrossRefGoogle Scholar
  32. 32.
    Panyam J, Dali MA, Sahoo SK, Ma WX, Chakravarthi SS, Amidon GL, et al. Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release. 2003;92:173–87.CrossRefPubMedGoogle Scholar
  33. 33.
    Suarez S, Grover GN, Braden RL, Christman KL, Amutairi A. Tunable protein release from acetalated dextran microparticles: a platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules. 2013;14:3927–35.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Couto LT, Donato JL, De Nucci G. Analysis of five streptokinase formulations using the euglobulin lysis test and the plasminogen activation assay. Braz J Med Biol Res. 2004;37:1889–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Hughes GA. Nanostructure-mediated drug delivery. Dis Mon. 2005;51:342–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Kathleen D, Vandervoort J, Van den Mooter G, Ludwig A. Evaluation of ciprofloxacin-loaded Eudragit((R)) RS100 or RL100/PLGA nanoparticles. Int J Pharm. 2006;314:72–82.CrossRefGoogle Scholar
  37. 37.
    Wu JH, Siddiqui K, Diamond SL. Transport phenomena and clot dissolving therapy: an experimental investigation of diffusion-controlled and permeation-enhanced fibrinolysis. Thromb Haemost. 1994;72:105–12.PubMedGoogle Scholar
  38. 38.
    Staros JV, Wright RW, Swingle DM. Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions. Anal Biochem. 1986;156:220–2.CrossRefPubMedGoogle Scholar
  39. 39.
    Mustafin RI, Bodrov AV, Kemenova VA, Rombaut P, Van den Mooter G. Interpolymer interaction between countercharged types of Eudragit(A (R)) RL30D and FS30D in binary films as a method of drug release modification in oral delivery systems. Pharm Chem J. 2012;46:45–9.CrossRefGoogle Scholar
  40. 40.
    Mahmoodi M, Khosroshahi ME, Atyabi F. Early experimental results of thrombolysis using controlled release of tissue plasminogen activator encapsulated by PLGA/CS nanoparticles delivered by pulse 532 nm laser. Dig J Nanomater Biostruct. 2011;6:889–905.Google Scholar
  41. 41.
    Chen JP, Yang PC, Ma YH, Wu T. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr Polym. 2011;84:364–72.CrossRefGoogle Scholar
  42. 42.
    Jin HJ, Zhang H, Sun ML, Zhang BG, Zhang JW. Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. J Thromb Thrombolysis. 2013;36:458–68.CrossRefPubMedGoogle Scholar
  43. 43.
    Modaresi SMS, Mehr SE, Faramarzi MA, Gharehdaghi EE, Azarnia M, Modarressi MH, et al. Preparation and characterization of self-assembled chitosan nanoparticles for the sustained delivery of streptokinase: an in vivo study. Pharm Dev Technol. 2014;19:593–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Nguyen DA, Fogler HS. Facilitated diffusion in the dissolution of carboxylic polymers. AIChE J. 2005;51:415–25.CrossRefGoogle Scholar
  45. 45.
    Chakravarthi SS, Robinson DH. Enhanced cellular association of paclitaxel delivered in chitosan-PLGA particles. Int J Pharm. 2011;409:111–20.CrossRefPubMedGoogle Scholar
  46. 46.
    Blinc A, Francis CW. Transport processes in fibrinolysis and fibrinolytic therapy. Thromb Haemost. 1996;76:481–91.PubMedGoogle Scholar
  47. 47.
    Blinc A, Planinsic G, Keber D, Jarh O, Lahajnar G, Zidansek A, et al. Dependence of blood clot lysis on the mode of transport of urokinase into the clot—a magnetic resonance imaging study in vitro. Thromb Haemost. 1991;65:549–52.PubMedGoogle Scholar
  48. 48.
    Diamond SL, Anand S. Inner clot diffusion and permeation during fibrinolysis. Biophys J. 1993;65:2622–43.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Collet JP, Montalescot G, Lesty C, Weisel JW. A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ Res. 2002;90:428–34.CrossRefPubMedGoogle Scholar
  50. 50.
    Sakharov DV, Nagelkerke JF, Rijken DC. Rearrangements of the fibrin network and spatial distribution of fibrinolytic components during plasma clot lysis—study with confocal microscopy. J Biol Chem. 1996;271:2133–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke. 2004;35:2220–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Zehendner CM, Librizzi L, de Curtis M, Kuhlmann CRW, Luhmann HJ. Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage. PLoS ONE. 2011;6:11.CrossRefGoogle Scholar
  53. 53.
    Ishii T, Fukuta T, Agato Y, Oyama D, Yasuda N, Shimizu K, et al. Nanoparticles accumulate in ischemic core and penumbra region even when cerebral perfusion is reduced. Biochem Biophys Res Commun. 2013;430:1201–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Cruz LJ, Stammes MA, Que I, van Beek ER, Knol-Blankevoort VT, Snoeks TJA, et al. Effect of PLGA NP size on efficiency to target traumatic brain injury. J Control Release. 2016;223:31–41.CrossRefPubMedGoogle Scholar
  55. 55.
    Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007;2:469–78.CrossRefPubMedGoogle Scholar
  56. 56.
    Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology. 2010;151:458–65.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ishak RAH, Awad GAS, Zaki NM, El-Shamy A, Mortada ND. A comparative study of chitosan shielding effect on nano-carriers hydrophilicity and biodistribution. Carbohydr Polym. 2013;94:669–76.CrossRefPubMedGoogle Scholar
  58. 58.
    Ziemba B, Halets I, Shcharbin D, Appelhans D, Voit B, Pieszynski I, et al. Influence of fourth generation poly(propyleneimine) dendrimers on blood cells. J Biomed Mater Res A. 2012;100A:2870–80.CrossRefGoogle Scholar
  59. 59.
    Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, et al. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano. 2012;6:9900–10.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jones CF, Campbell RA, Franks Z, Gibson CC, Thiagarajan G, Vieira-de-Abreu A, et al. Cationic PAMAM dendrimers disrupt key platelet functions. Mol Pharm. 2012;9:1599–611.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kohane DS, Anderson DG, Yu C, Langer R. pH-triggered release of macromolecules from spray-dried polymethacrylate microparticles. Pharm Res. 2003;20:1533–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Zago AC, Raudales JC, Attizzani G, Matte BS, Yamamoto GI, Balvedi JA, et al. Local delivery of sirolimus nanoparticles for the treatment of in-stent restenosis. Catheter Cardiovasc Interv. 2013;81:E124–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemical, Biological and Materials EngineeringUniversity of OklahomaNormanUSA
  2. 2.University of Oklahoma Biomedical Engineering CenterNormanUSA

Personalised recommendations