Pharmaceutical Research

, Volume 33, Issue 2, pp 510–525 | Cite as

A Comparison of the Pharmacokinetics and Pulmonary Lymphatic Exposure of a Generation 4 PEGylated Dendrimer Following Intravenous and Aerosol Administration to Rats and Sheep

  • Gemma M. Ryan
  • Robert J. Bischof
  • Perenlei Enkhbaatar
  • Victoria M. McLeod
  • Linda J. Chan
  • Seth A. Jones
  • David J. Owen
  • Christopher J. H. Porter
  • Lisa M. Kaminskas
Research Paper



Cancer metastasis to pulmonary lymph nodes dictates the need to deliver chemotherapeutic and diagnostic agents to the lung and associated lymph nodes. Drug conjugation to dendrimer-based delivery systems has the potential to reduce toxicity, enhance lung retention and promote lymphatic distribution in rats. The current study therefore evaluated the pharmacokinetics and lung lymphatic exposure of a PEGylated dendrimer following inhaled administration.


Plasma pharmacokinetics and disposition of a 22 kDa PEGylated dendrimer were compared after aerosol administration to rats and sheep. Lung-derived lymph could not be sampled in rats and so lymphatic transport of the dendrimer from the lung was assessed in sheep.


Higher plasma concentrations were achieved when dendrimer was administered to the lungs of rats as a liquid instillation when compared to an aerosol. Plasma pharmacokinetics were similar between sheep and rats, although some differences in disposition patterns were evident. Unexpectedly, less than 0.5% of the aerosol dose was recovered in pulmonary lymph.


The data suggest that rats provide a relevant model for assessing the pharmacokinetics of inhaled macromolecules prior to evaluation in larger animals, but that the pulmonary lymphatics are unlikely to play a major role in the absorption of nanocarriers from the lungs.


lymphatic pharmacokinetics pulmonary rats sheep 



Bronchoalveolar lavage fluid


Caudal mediastinal lymph duct


Caudal mediastinal lymph node

Alveolar macrophages


Size exclusion chromatography



This work was funded by a strategic Monash research grant and an Australian Research Council Linkage grant. LMK was supported by a NHMRC Career Development Fellowship (APP1022732). GMR was supported by a Cancer Council Victoria Postgraduate Scholarship.


  1. 1.
    Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–44.CrossRefPubMedGoogle Scholar
  2. 2.
    Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.CrossRefPubMedGoogle Scholar
  3. 3.
    Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012;64:302–15.CrossRefGoogle Scholar
  4. 4.
    McLeod VM, Chan LJ, Ryan GM, Porter CJH, Kaminskas LM. Optimal PEGylation can improve the exposure of interferon in the lungs following pulmonary administration. J Pharm Sci. 2015;104(4):1421–30.CrossRefPubMedGoogle Scholar
  5. 5.
    Baginski L, Gobbo OL, Tewes F, Salomon JJ, Healy AM, Bakowsky U, et al. In vitro and in vivo characterisation of PEG-lipid-based micellar complexes of salmon calcitonin for pulmonary delivery. Pharm Res. 2012;29(6):1425–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Kaminskas LM, Kota J, McLeod VM, Kelly BD, Karellas P, Porter CJH. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J Control Release. 2009;140(2):108–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Ryan GM, Kaminskas LM, Porter CJH. Nano-chemotherapeutics: Maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release. 2014.Google Scholar
  8. 8.
    Tiantian Y, Wenji Z, Mingshuang S, Rui Y, Shuangshuang S, Yuling M, et al. Study on intralymphatic-targeted hyaluronic acid-modified nanoliposome: influence of formulation factors on the lymphatic targeting. Int J Pharm. 2014;471(1–2):245–57.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu H, Moynihan KD, Zheng Y, Szeto GL, Li AV, Huang B, et al. Structure-based programming of lymph-node targeting in molecular vaccines. Nature. 2014;507(7493):519–22.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Ryan GM, Kaminskas LM, Bulitta JB, McIntosh MP, Owen DJ, Porter CJH. PEGylated polylysine dendrimers increase lymphatic exposure to doxorubicin when compared to PEGylated liposomal and solution formulations of doxorubicin. J Control Release. 2013;172(1):128–36.CrossRefPubMedGoogle Scholar
  11. 11.
    Kourtis IC, Hirosue S, de Titta A, Kontos S, Stegmann T, Hubbell JA, et al. Peripherally administered nanoparticles target monocytic myeloid cells, secondary lymphoid organs and tumors in mice. PLoS ONE. 2013;8(4):e61646.PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Khullar OV, Griset AP, Gibbs-Strauss SL, Chirieac LR, Zubris KAV, Frangioni JV, et al. Nanoparticle migration and delivery of paclitaxel to regional lymph nodes in a large animal model. J Am Coll Surg. 2012;214(3):328–37.PubMedCentralCrossRefPubMedGoogle Scholar
  13. 13.
    Kim CK, Han JH. Lymphatic delivery and pharmacokinetics of methotrexate after intramuscular injection of differently charged liposome-entrapped methotrexate to rats. J Microencapsul. 1995;12(4):437–46.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaminskas LM, McLeod VM, Ryan GM, Kelly BD, Haynes JM, Williamson M, et al. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J Control Release. 2014;183:18–26.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaminskas LM, Boyd BJ, Karellas P, Krippner GY, Lessene R, Kelly B, et al. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly l-lysine dendrimers. Mol Pharm. 2008;5(3):449–63.CrossRefPubMedGoogle Scholar
  16. 16.
    Boyd BJ, Kaminskas LM, Karellas P, Krippner G, Lessene R, Porter CJ. Cationic poly-L-lysine dendrimers: pharmacokinetics, biodistribution, and evidence for metabolism and bioresorption after intravenous administration to rats. Mol Pharm. 2006;3(5):614–27.CrossRefPubMedGoogle Scholar
  17. 17.
    Ryan GM, Kaminskas LM, Kelly BD, Owen DJ, McIntosh MP, Porter CJH. Pulmonary administration of PEGylated polylysine dendrimers: absorption from the lung versus retention within the lung is highly size-dependent. Mol Pharm. 2013;10(8):2986–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Cryan S-A, Sivadas N, Garcia-Contreras L. In vivo animal models for drug delivery across the lung mucosal barrier. Adv Drug Deliv Rev. 2007;59(11):1133–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Abraham WM. Modeling of asthma, COPD and cystic fibrosis in sheep. Pulm Pharmacol Ther. 2008;21(5):743–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discov Today: Dis Model. 2009;6(4):101–6.Google Scholar
  21. 21.
    Albertine KH. Progress in understanding the pathogenesis of BPD using the baboon and sheep models. Semin Perinatol. 2013;37(2):60–8.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    De Las Heras Guillamón M, Borderías Clau L. The sheep as a large animal experimental model in respiratory diseases research. Arch Bronconeumol. 2010;46(10):499–501.CrossRefGoogle Scholar
  23. 23.
    Scheerlinck J-PY, Snibson KJ, Bowles VM, Sutton P. Biomedical applications of sheep models: from asthma to vaccines. Trends Biotechnol. 2008;26(5):259–66.CrossRefPubMedGoogle Scholar
  24. 24.
    Schlesinger RB. Comparative deposition of inhaled aerosols in experimental animals and humans: a review. J Toxicol Environ Health. 1985;15(2):197–214.CrossRefPubMedGoogle Scholar
  25. 25.
    Staub NC, Bland RD, Brigham KL, Demling R, Erdmann Iii AJ, Woolverton WC. Preparation of chronic lung lymph fistulas in sheep. J Surg Res. 1975;19(5):315–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Enkhbaatar P, Murakami K, Shimoda K, Mizutani A, Traber L, Phillips GB, et al. The iNOS inhibitor, BBS-2 prevents acute lung injury in sheep after burn and smoke inhalation injury. Am J Respir Crit Care Med. 2003;167:1021–6.CrossRefPubMedGoogle Scholar
  27. 27.
    Caliph SM, Shackleford DM, Ascher DB, Kaminskas LM. Practical lessons in murine thoracic lymph duct cannulations: observations in female and male mice across four different strains that impact on “cannulatability”. J Pharm Sci. 2015;104(3):1207–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Slatter JG, Adams LA, Bush EC, Chiba K, Daley-Yates PT, Feenstra KL, et al. Pharmacokinetics, toxicokinetics, distribution, metabolism and excretion of linezolid in mouse, rat and dog. Xenobiotica. 2002;32(10):907–24.CrossRefPubMedGoogle Scholar
  29. 29.
    Prankerd RJ, Nguyen T-H, Ibrahim JP, Bischof RJ, Nassta GC, Olerile LD, et al. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries. PLoS ONE. 2013;8(12):e82965.PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Hershey AE, Kurzman ID, Forrest LJ, Bohling CA, Stonerook M, Placke ME, et al. Inhalation chemotherapy for macroscopic primary or metastatic lung tumors: proof of principle using dogs with spontaneously occurring tumors as a model. Clin Cancer Res. 1999;5(9):2653–9.PubMedGoogle Scholar
  31. 31.
    Zarogoulidis P, Chatzaki E, Porpodis K, Domvri K, Hohenforst-Schmidt W, Goldberg EP, et al. Inhaled chemotherapy in lung cancer: future concept of nanomedicine. Int J Nanomed. 2012;7:1551–72.CrossRefGoogle Scholar
  32. 32.
    Gagnadoux F, Pape AL, Lemarié E, Lerondel S, Valo I, Leblond V, et al. Aerosol delivery of chemotherapy in an orthotopic model of lung cancer. Eur Respir J. 2005;26(4):657–61.CrossRefPubMedGoogle Scholar
  33. 33.
    Wittgen BPH, Kunst PWA, van der Born K, van Wijk AW, Perkins W, Pilkiewicz FG, et al. Phase I study of aerosolized SLIT cisplatin in the treatment of patients with carcinoma of the lung. Clin Cancer Res. 2007;13(8):2414–21.CrossRefPubMedGoogle Scholar
  34. 34.
    Otterson GA, Villalona-Calero MA, Sharma S, Kris MG, Imondi A, Gerber M, et al. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res. 2007;13(4):1246–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Protein purification: principles, high resolution methods, and applications. 3rd ed. Janson J-C, editor: Wiley; 2012.Google Scholar
  36. 36.
    Colthorpe P, Farr SJ, Taylor G, Smith IJ, Wyatt D. The pharmacokinetics of pulmonary-delivered insulin: a comparison of intratracheal and aerosol administration to the rabbit. Pharm Res. 1992;9(6):764–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Niven RW, Whitcomb KL, Shaner L, Ip AY, Kinstler OB. The pulmonary absorption of aerosolized and intratracheally instilled rhG-CSF and monoPEGylated rhG-CSF. Pharm Res. 1995;12(9):1343–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Codrons V, Vanderbist F, Ucakar B, Préat V, Vanbever R. Impact of formulation and methods of pulmonary delivery on absorption of parathyroid hormone (1–34) from rat lungs. J Pharm Sci. 2004;93(5):1241–52.CrossRefPubMedGoogle Scholar
  39. 39.
    Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci. 1986;75(11):1028–40.CrossRefPubMedGoogle Scholar
  40. 40.
    Belvisi MG, Hele DJ. Animal models of cough. In: Chung FK, Boushey H, Widdicombe J, editors. Cough: causes, mechanisms and therapy: Wiley Online Library; 2007.Google Scholar
  41. 41.
    Bennett WD, Foster WM, Chapman WF. Cough-enhanced mucus clearance in the normal lung. J Appl Physiol. 1990;69(5):1670–5.PubMedGoogle Scholar
  42. 42.
    Hasani A, Pavia D, Agnew J, Clarke S. Regional lung clearance during cough and forced expiration technique (FET): effects of flow and viscoelasticity. Thorax. 1994;49(6):557–61.PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    van der Wal JG, Meyer JHF. Protein digestion in ruminants. S Afr J Anim Sci. 1988;18(1):30–41.Google Scholar
  44. 44.
    Chanana AD, Joel DD. The ovine bronchopulmonary lymph drainage pathways: a model to study pulmonary immune responses. Exp Lung Res. 1985;9(3–4):211–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Schraufnagel DE. Lung lymphatic anatomy and correlates. Pathophysiology. 2010;17(4):337–43.CrossRefPubMedGoogle Scholar
  46. 46.
    Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010;28(12):1300–3.PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Matthay MA, Berthiaume Y, Albertine KH, Grady M, Fick G. Protein clearance from the air spaces and lungs of unanesthetized sheep over 144 h. J Appl Physiol. 1989;67(5):1887–97.PubMedGoogle Scholar
  48. 48.
    Buchackert Y, Rummel S, Vohwinkel CU, Gabrielli NM, Grzesik BA, Mayer K, et al. Megalin mediates transepithelial albumin clearance from the alveolar space of intact rabbit lungs. J Physiol. 2012;590(Pt 20):5167–81.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Gemma M. Ryan
    • 1
  • Robert J. Bischof
    • 2
  • Perenlei Enkhbaatar
    • 3
  • Victoria M. McLeod
    • 1
  • Linda J. Chan
    • 1
  • Seth A. Jones
    • 1
    • 4
  • David J. Owen
    • 4
  • Christopher J. H. Porter
    • 1
  • Lisa M. Kaminskas
    • 1
  1. 1.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  2. 2.Biotechnology Research Laboratories, School of Biomedical SciencesMonash UniversityClaytonAustralia
  3. 3.Department of AnaesthesiologyUniversity of Texas Medical BranchGalvestonUSA
  4. 4.Starpharma Pty LtdAbbotsfordAustralia

Personalised recommendations