Skip to main content

Advertisement

Log in

Aerosolized Non-viral Nucleic Acid Delivery in the Vaginal Tract of Pigs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The human pathogen Chlamydia trachomatis is worldwide the leading cause of bacterial sexually transmitted disease. Nasal or vaginal nucleic acid vaccination is a promising strategy for controlling genital Chlamydia trachomatis infections. Since naked nucleic acids are generally not efficiently taken up by cells, they are often complexed with carriers that facilitate their intracellular delivery.

Methods

In the current study, we screened a variety of commonly used non-viral gene delivery carriers for their ability to transfect newborn pig tracheal cells. The effect of aerosolization on the physicochemical properties and transfection efficiency of the complexes was also evaluated in vitro. Subsequently, a pilot experiment was performed in which the selected complexes were aerosolized in the vaginal tract of pigs.

Results

Both mRNA and pDNA containing lipofectamine and ADM70 complexes showed promise for protein expression in vitro, before and after aerosolization. In vivo, only lipofectamine/pDNA complexes resulted in high protein expression levels 24 h following aerosolization. This correlates to the unexpected observation that the presence of vaginal mucus increases the efficiency of lipofectamine/pDNA complexes 3-fold, while the efficiency of lipofectamine/mRNA complexes and ADM70/mRNA and ADM70/pDNA complexes decreased.

Conclusions

As aerosolization was an easy and effective method to deliver complexes to the vaginal tract of pigs, we believe this application technique has future potential for both vaginal and perhaps nasal vaccination using non-viral gene delivery vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C.:

Chlamydia

DLS:

Dynamic light scattering

DMEM:

Dulbecco’s modified Eagle’s medium

DMPE:

1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine

DMSO:

Dimethylsulfoxide

DOPE:

Dioleoylphosphatidylethanolamine

DOTAP:

1,2-dioleoyl-3-trimethylammonium-propane

FCS:

Fetal calf serum

GFP:

Green fluorescent protein

GL67:

Genzyme lipid 67

Luc:

Luciferase

MTT:

3-(4,5-dimethylthiazole-2yl)-2,5-diphenyl tetrazolium bromide

NPTr:

Newborn pig tracheal

PEG:

Polyethylene glycol

PEI:

Polyethyleneimine

ROI:

Regions of interest

References

  1. WHO. Global incidence and prevalence of selected curable sexually transmitted infections – 2008. Geneva: World Health Organization; 2012.

    Google Scholar 

  2. Peipert JF. Genital chlamydial infections. N Engl J Med. 2003;349:2424–30.

    Article  CAS  PubMed  Google Scholar 

  3. Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149–61.

    Article  CAS  PubMed  Google Scholar 

  4. Manavi K. A review on infection with Chlamydia trachomatis. Best Pract Res Clin Obstet Gynaecol. 2006;20(6):941–51.

    Article  PubMed  Google Scholar 

  5. Cunningham KA, Beagley KW. Male genital tract chlamydial infection: implications for pathology and infertility. Biol Reprod. 2008;79(2):180–9.

    Article  CAS  PubMed  Google Scholar 

  6. Westrom L, Joesoef R, Reynolds G, Hagdu A, Thompson SE. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis. 1992;19(4):185–92.

    Article  CAS  PubMed  Google Scholar 

  7. Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F, Ness RB. Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis. 2010;201 Suppl 2:S134–55.

    Article  PubMed  Google Scholar 

  8. Plummer FA, Simonsen JN, Cameron DW, Ndinya-Achola JO, Kreiss JK, Gakinya MN, et al. Cofactors in male–female sexual transmission of human immunodeficiency virus type 1. J Infect Dis. 1991;163(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  9. Koskela P, Anttila T, Bjørge T, Brunsvig A, Dillner J, Hakama M, et al. Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer. 2000;85(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  10. Samoff E, Koumans EH, Markowitz LE, Sternberg M, Sawyer MK, Swan D, et al. Association of Chlamydia trachomatis with persistence of high-risk types of human papillomavirus in a cohort of female adolescents. Am J Epidemiol. 2005;162(7):668–75.

    Article  PubMed  Google Scholar 

  11. Stagg AJ. Vaccines against Chlamydia: approaches and progress. Mol Med Today. 1998;4(4):166–73.

    Article  CAS  PubMed  Google Scholar 

  12. Hafner L, Beagley K, Timms P. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol. 2008;1(2):116–30.

    Article  CAS  PubMed  Google Scholar 

  13. Kanazawa T, Takashima Y, Shibata Y, Tsuchiya M, Tamura T, Okada H. Effective vaginal DNA delivery with high transfection efficiency is a good system for induction of higher local vaginal immune responses. J Pharm Pharmacol. 2009;61(11):1457–63.

    Article  CAS  PubMed  Google Scholar 

  14. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(4 Suppl):S45–53.

    Article  CAS  PubMed  Google Scholar 

  15. Wassén L, Schön K, Holmgren J, Jertborn M, Lycke N. Local intravaginal vaccination of the female genital tract. Scand J Immunol. 1996;44(4):408–14.

    Article  PubMed  Google Scholar 

  16. Johansson EL, Wassén L, Holmgren J, Jertborn M, Rudin A. Nasal and vaginal vaccinations have differential effects on antibody responses in vaginal and cervical secretions in humans. Infect Immun. 2001;69(12):7481–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev. 2012;64(1):78–94.

    Article  CAS  PubMed  Google Scholar 

  18. Tavernier G, Andries O, Demeester J, Sanders NN, De Smedt SC, Rejman J. mRNA as gene therapeutic: how to control protein expression. J Control Release. 2011;150(3):238–47.

    Article  CAS  PubMed  Google Scholar 

  19. Remaut K, Sanders NN, De Geest BG, Braeckmans K, Demeester J, De Smedt SC. Nucleic acid delivery: where material sciences and bio-sciences meet. Mater Sci Eng R Rep. 2007;58(3–5):117–61.

    Article  Google Scholar 

  20. Symens N, Méndez-Ardoy A, Díaz-Moscoso A, Sánchez-Fernández E, Remaut K, Demeester J, et al. Efficient transfection of hepatocytes mediated by mRNA complexed to galactosylated cyclodextrins. Bioconjug Chem. 2012;23(6):1276–89.

    Article  CAS  PubMed  Google Scholar 

  21. Ferrari M, Scalvini A, Losio MN, Corradi A, Soncini M, Bignotti E, et al. Establishment and characterization of two new pig cell lines for use in virological diagnostic laboratories. J Virol Methods. 2003;107(2):205–12.

    Article  CAS  PubMed  Google Scholar 

  22. Geall AJ, Mandl CW, Ulmer JB. RNA: the new revolution in nucleic acid vaccines. Semin Immunol. 2013;25(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  23. Longbottom D, Livingstone M. Vaccination against chlamydial infections of man and animals. Vet J. 2006;171(2):263–75.

    Article  CAS  PubMed  Google Scholar 

  24. Devoldere J, Dewitte H, De Smedt SC, Remaut K. Evading innate immunity in nonviral mRNA delivery: don’t shoot the messenger. Drug Discov Today. 2015. doi:10.1016/j.drudis.2015.07.009.

    PubMed  Google Scholar 

  25. Andries O, De Filette M, De Smedt SC, Demeester J, Van Poucke M, Peelman L, et al. Innate immune response and programmed cell death following carrier-mediated delivery of unmodified mRNA to respiratory cells. J Control Release. 2013;167(2):157–66.

    Article  CAS  PubMed  Google Scholar 

  26. Andries O, Cafferty SM, De Smedt SC, Weiss R, Sanders NN, Kitada T. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control release. 2015;217:337–44.

  27. Schautteet K, Stuyven E, Beeckman DS, Van Acker S, Carlon M, Chiers K, et al. Protection of pigs against Chlamydia trachomatis challenge by administration of a MOMP-based DNA vaccine in the vaginal mucosa. Vaccine. 2011;29(7):1399–407.

    Article  CAS  PubMed  Google Scholar 

  28. Schautteet K, De Clercq E, Jönsson Y, Lagae S, Chiers K, Cox E, et al. Protection of pigs against genital Chlamydia trachomatis challenge by parenteral or mucosal DNA immunization. Vaccine. 2012;30(18):2869–81.

    Article  CAS  PubMed  Google Scholar 

  29. Iwasaki A. Antiviral immune responses in the genital tract: clues for vaccines. Nat Rev Immunol. 2010;10(10):699–711.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bettinger T, Carlisle RC, Read ML, Ogris M, Seymour LW. Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. 2001;29(18):3882–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Karikó K, Muramatsu H, Welsh FA, Ludwig J, Kato H, Akira S, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–40.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. 1980;22(2 Pt 2):479–88.

    Article  CAS  PubMed  Google Scholar 

  33. Mirzayans R, Aubin RA, Paterson MC. Differential expression and stability of foreign genes introduced into human fibroblasts by nuclear versus cytoplasmic microinjection. Mutat Res. 1992;281(2):115–22.

    Article  CAS  PubMed  Google Scholar 

  34. Thorburn AM, Alberts AS. Efficient expression of miniprep plasmid DNA after needle micro-injection into somatic cells. Biotechniques. 1993;14(3):356–8.

    CAS  PubMed  Google Scholar 

  35. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270(32):18997–9007.

    Article  CAS  PubMed  Google Scholar 

  36. Martens TF, Remaut K, Demeester J, De Smedt SC, Braeckmans K. Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today. 2014;9(3):344–64.

    Article  CAS  Google Scholar 

  37. Zu R, Zuhorn IS, Hoekstra D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances. J Control Release. 2013;166(1):46–56.

    Article  Google Scholar 

  38. Zu R, Hoekstra D, Zuhorn IS. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013;7(5):3767–77.

    Article  Google Scholar 

  39. Andries O, De Filette M, Rejman J, De Smedt SC, Demeester J, Van Poucke M, et al. Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol Pharm. 2012;9(8):2136–45.

    CAS  PubMed  Google Scholar 

  40. Ponsaerts P, Van Tendeloo VFI, Berneman ZN. Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol. 2003;134(3):378–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gilboa E, Vieweg J. Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. 2004;199:251–63.

    Article  CAS  PubMed  Google Scholar 

  42. Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine. 2012;30(30):4414–8.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Oliwia Andries is a doctoral fellow of the Research Foundation Flanders. Their financial support is acknowledged with gratitude. E. De Clercq has a PhD fellowship from the Special Research Fund of Ghent University. We also acknowledge funding support from the Research Foundation Flanders (FWO grant n° G.0621.10) and the Special Research Fund (BOF) of Ghent University. Dr. Bakr Ahmed is acknowledged for the collection of pig’s cervical mucus. J. M. García Fernández and J. M. Benito acknowledge financial support from the Junta de Andalucía (contract number FQM2012-1467), and the European Regional Development Funds (FEDER).

Compliance with Ethical Standards

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Ghent University).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisy Vanrompay.

Additional information

Niek Sanders and Daisy Vanrompay contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Suppl Fig 1

Cell viability. NPTr cells were treated with different mRNA/carrier complexes as depicted in the x-axis. Blanc represents non-transfected cells and DMSO served as positive control. * Significantly different from non-treated cells (blanc) (P ≤ 0.05). (JPG 1.12 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remaut, K., De Clercq, E., Andries, O. et al. Aerosolized Non-viral Nucleic Acid Delivery in the Vaginal Tract of Pigs. Pharm Res 33, 384–394 (2016). https://doi.org/10.1007/s11095-015-1796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1796-x

Key words

Navigation