Skip to main content

Advertisement

Log in

Oxaprozin-Loaded Lipid Nanoparticles towards Overcoming NSAIDs Side-Effects

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nanostructured Lipid Carriers (NLCs) loading oxaprozin were developed to address an effective drug packaging and targeted delivery, improving the drug pharmacokinetics and pharmacodynamics properties and avoiding the local gastric side-effects. Macrophages actively phagocyte particles with sizes larger than 200 nm and, when activated, over-express folate beta receptors - features that in the case of this work constitute the basis for passive and active targeting strategies.

Methods

Two formulations containing oxaprozin were developed: NLCs with and without folate functionalization. In order to target the macrophages folate receptors, a DSPE-PEG2000-FA conjugate was synthesized and added to the NLCs.

Results

These formulations presented a relatively low polydispersity index (approximately 0.2) with mean diameters greater than 200 nm and zeta potential inferior to −40 mV. The encapsulation efficiency of the particles was superior to 95% and the loading capacity was of 9%, approximately. The formulations retained the oxaprozin release in simulated gastric fluid (only around 10%) promoting its release on simulated intestinal fluid. MTT and LDH assays revealed that the formulations only presented cytotoxicity in Caco-2 cells for oxaprozin concentrations superior to 100 μM. Permeability studies in Caco-2 cells shown that oxaprozin encapsulation did not interfered with oxaprozin permeability (around 0.8 × 10−5 cm/s in simulated intestinal fluid and about 1.45 × 10−5 cm/s in PBS). Moreover, in RAW 264.7 cells NLCs functionalization promoted an increased uptake over time mainly mediated by a caveolae uptake mechanism.

Conclusions

The developed nanoparticles enclose a great potential for oxaprozin oral administration with significant less gastric side-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DSPE-PEG2000-FA:

Disteroylphosphatidylethanolamine-poly(ethylene glycol)2000-folic acid

EE:

Encapsulation efficiency

FA-NLCs + Oxa:

DSPE-PEG2000-FA functionalized oxaprozin loaded nanostructured lipid carriers NLCs

FA-NLCs:

DSPE-PEG2000-FA functionalized placebo nanostructured lipid carriers

FR:

Folate receptor

GI:

Gastrointestinal

LC:

Loading capacity

LNs:

Lipid nanoparticles

NLCs:

Nanostructured lipid carriers

NLCs Placebo:

Non-functionalized placebo nanostructured lipid carriers

NLCs + Oxa:

Non-functionalized oxaprozin loaded nanostructured lipid carriers

NSAIDs:

Non-steroidal Anti-inflammatory drugs

Oxa:

Oxaprozin

SLN:

Solid lipid nanoparticles

TEER:

Transepithelial electrical resistance

References

  1. Bruno A, Tacconelli S, Patrignani P. Variability in the Response to Non-Steroidal Anti-Inflammatory Drugs: Mechanisms and Perspectives. Basic Clin Pharmacol Toxicol. 2014;114(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  2. Moilanen E. Two Faces of Inflammation: An Immunopharmacological View. Basic Clin Pharmacol Toxicol. 2014;114(1):2–6.

    Article  CAS  PubMed  Google Scholar 

  3. Rao PPN, Kabir SN, Mohamed T. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Progress in Small Molecule Drug Development. Pharmaceuticals. 2010;3(5):1530–49.

    Article  PubMed Central  CAS  Google Scholar 

  4. Qandil A. Prodrugs of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs), More Than Meets the Eye: A Critical Review. Int J Mol Sci. 2012;13(12):17244–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kean WF, Buchanan WW. The use of NSAIDs in rheumatic disorders 2005: a global perspective. Inflammopharmacology. 2005;13(4):343–70.

    Article  CAS  PubMed  Google Scholar 

  6. Knights KM, Mangoni AA, Miners JO. Defining the COX inhibitor selectivity of NSAIDs: implications for understanding toxicity. Expert Rev Clin Pharmacol. 2010;3(6):769–76.

    Article  CAS  PubMed  Google Scholar 

  7. Vane JR, Botting RM. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am J Med. 1998;104(3A):2S–8.

    Article  CAS  PubMed  Google Scholar 

  8. Shaji J, Lal M. Nanocarriers for targeting in inflammation. Asian J Pharm Clin Res. 2013;6:3–12.

    CAS  Google Scholar 

  9. Hua S. Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front Pharmacol. 2013;4:127.

    PubMed Central  PubMed  Google Scholar 

  10. Crielaard BJ, Lammers T, Schiffelers RM, Storm G. Drug targeting systems for inflammatory disease: one for all, all for one. J Control Release: Off J Control Release Soc. 2012;161(2):225–34.

    Article  CAS  Google Scholar 

  11. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  CAS  PubMed  Google Scholar 

  12. Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J R Soc Interface R Soc. 2010;7 Suppl 1:S55–66.

    Article  CAS  Google Scholar 

  13. Elnakat H, Ratnam M. Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev. 2004;56(8):1067–84.

    Article  CAS  PubMed  Google Scholar 

  14. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci. 1991;88(13):5572–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56(9):1257–72.

    Article  CAS  PubMed  Google Scholar 

  16. Das S, Chaudhury A. Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery. AAPS PharmSciTech. 2011;12(1):62–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.

    Article  CAS  PubMed  Google Scholar 

  18. Khan AA, Mudassir J, Mohtar N, Darwis Y. Advanced drug delivery to the lymphatic system: lipid-based nanoformulations. Int J Nanomedicine. 2013;8:2733–44.

    PubMed Central  Google Scholar 

  19. Severino P, Andreani T, Macedo AS, Fangueiro JF, Santana MH, Silva AM, et al. Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. J Drug Deliv. 2012;2012:750891.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Weber S, Zimmer A, Pardeike J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur J Pharm Biopharm. 2014;86(1):7–22.

    Article  CAS  PubMed  Google Scholar 

  21. Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.

    Article  CAS  PubMed  Google Scholar 

  22. Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;65(6):800–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Van de Graaff KM. Anatomy and physiology of the gastrointestinal tract. Pediatr Infect Dis. 1986;5(1 Suppl):S11–6.

    Article  PubMed  Google Scholar 

  24. Woodley JF. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 1994;11(2–3):61–95.

    CAS  PubMed  Google Scholar 

  25. Rainsford KD, Omar H, Ashraf A, Hewson AT, Bunning RAD, Rishiraj R, et al. Recent pharmacodynamic and pharmacokinetic findings on oxaprozin. Inflammopharmacology. 2002;10(3):185–239.

    Article  CAS  Google Scholar 

  26. Bozic BD, Rogan JR, Poleti DD, Trisovic NP, Uscumlic GS. Synthesis, characterization and antiproliferative activity of transition metal complexes with 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanoic acid (oxaprozin). Chem Pharm Bull. 2012;60(7):865–9.

    Article  CAS  PubMed  Google Scholar 

  27. Chan P, Kurisawa M, Chung JE, Yang Y-Y. Synthesis and characterization of chitosan-g-poly(ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials. 2007;28(3):540–9.

    Article  CAS  PubMed  Google Scholar 

  28. van Steenis JH, van Maarseveen EM, Verbaan FJ, Verrijk R, Crommelin DJA, Storm G, et al. Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polyplexes. J Control Release. 2003;87(1–3):167–76.

    Article  PubMed  Google Scholar 

  29. Woitiski CB, Sarmento B, Carvalho RA, Neufeld RJ, Veiga F. Facilitated nanoscale delivery of insulin across intestinal membrane models. Int J Pharm. 2011;412(1–2):123–31.

    Article  CAS  PubMed  Google Scholar 

  30. Benfer M, Kissel T. Cellular uptake mechanism and knockdown activity of siRNA-loaded biodegradable DEAPA-PVA-g-PLGA nanoparticles. Eur J Pharm Biopharm. 2012;80(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  31. Serda RE, Gu J, Bhavane RC, Liu X, Chiappini C, Decuzzi P, et al. The association of silicon microparticles with endothelial cells in drug delivery to the vasculature. Biomaterials. 2009;30(13):2440–8.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Z, Yao J. Preparation of Irinotecan-Loaded Folate-Targeted Liposome for Tumor Targeting Delivery and Its Antitumor Activity. AAPS PharmSciTech. 2012;13(3):802–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lee Y-k. Preparation and characterization of folic acid linked poly(L-glutamate) nanoparticles for cancer targeting. Macromol Res. 2006;14(3):387–93.

    Article  CAS  Google Scholar 

  34. Wang B, Gao Y, Li H-W, Hu Z-P, Wu Y. The switch-on luminescence sensing of histidine-rich proteins in solution: a further application of a Cu2+ ligand. Org Biomol Chem. 2011;9(11):4032–4.

    Article  CAS  PubMed  Google Scholar 

  35. Paranjpe PV, Chen Y, Kholodovych V, Welsh W, Stein S, Sinko PJ. Tumor-targeted bioconjugate based delivery of camptothecin: design, synthesis and in vitro evaluation. J Control Release. 2004;100(2):275–92.

    Article  CAS  PubMed  Google Scholar 

  36. Bonechi C, Donati A, Lampariello R, Martini S, Picchi MP, Ricci M, et al. Solution structure of folic acid: Molecular mechanics and NMR investigation. Spectrochim Acta A Mol Biomol Spectrosc. 2004;60(7):1411–9.

    Article  CAS  PubMed  Google Scholar 

  37. Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, et al. Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes: In Vitro Studies. Bioconjug Chem. 1999;10(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  38. Neves AR, Lucio M, Martins S, Lima JL, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine. 2013;8:177–87.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Honary S, Zahir F. Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 2). Trop J Pharm Res. 2013;12(2):265–73.

    Google Scholar 

  40. Maestrelli F, Cirri M, Mennini N, Zerrouk N, Mura P. Improvement of oxaprozin solubility and permeability by the combined use of cyclodextrin, chitosan, and bile components. Eur J Pharm Biopharm. 2011;78(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  41. Gan L-SL, Thakker DR. Applications of the Caco-2 model in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium. Adv Drug Deliv Rev. 1997;23(1–3):77–98.

    Article  CAS  Google Scholar 

  42. Schwebel HJ, van Hoogevest P, Leigh ML, Kuentz M. The apparent solubilizing capacity of simulated intestinal fluids for poorly water-soluble drugs. Pharm Dev Technol. 2011;16(3):278–86.

    Article  CAS  PubMed  Google Scholar 

  43. Frank KJ, Westedt U, Rosenblatt KM, Holig P, Rosenberg J, Magerlein M, et al. Impact of FaSSIF on the solubility and dissolution-/permeation rate of a poorly water-soluble compound. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2012;47(1):16–20.

    Article  CAS  Google Scholar 

  44. Yazdanian M, Briggs K, Jankovsky C, Hawi A. The “high solubility” definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs. Pharm Res. 2004;21(2):293–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ehrhardt C, Kim KJ. Drug Absorption Studies: In Situ, In Vitro and In Silico Models. New York: Springer; 2007.

    Google Scholar 

  46. Lin Y-H, Mi F-L, Chen C-T, Chang W-C, Peng S-F, Liang H-F, et al. Preparation and Characterization of Nanoparticles Shelled with Chitosan for Oral Insulin Delivery. Biomacromolecules. 2007;8(1):146–52.

    Article  CAS  PubMed  Google Scholar 

  47. Kandarova H. Evaluation and Validation of Reconstructed Human Skin Models as Alternatives to Animal Tests in Regulatory Toxicology. In: Biowissenschaften; Biologie. Freien Universität Berlin; 2006.

  48. Thompson C, Cheng WP, Gadad P, Skene K, Smith M, Smith G, et al. Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by Caco-2 cells--towards oral insulin. Pharm Res. 2011;28(4):886–96.

    Article  CAS  PubMed  Google Scholar 

  49. Yuan H, Chen C-Y, Chai G-h DY-Z, Hu F-Q. Improved Transport and Absorption through Gastrointestinal Tract by PEGylated Solid Lipid Nanoparticles. Mol Pharm. 2013;10(5):1865–73.

    Article  CAS  PubMed  Google Scholar 

  50. Huth US, Schubert R, Peschka-Süss R. Investigating the uptake and intracellular fate of pH-sensitive liposomes by flow cytometry and spectral bio-imaging. J Control Release. 2006;110(3):490–504.

    Article  CAS  PubMed  Google Scholar 

  51. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev. 2006;58(1):32–45.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and by National Funds through FCT - Foundation for Science and Technology under the Pest-C/EQB/LA0006/2013 and FCOMP-01-0124-FEDER-3728. The work also received financial support from the European Union (FEDER funds) under the framework of QREN through Project NORTE-07-0162-FEDER-000088. To all financing sources the authors are greatly indebted. JLA, ARN and CN also acknowledge the FCT for financial support through the Research grant PD/BI/105914/2014, PhD grant SFRH/BD/73379/2010 and Post-Doc Grant SFRH/BPD/81963/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Nunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes-de-Araújo, J., Neves, A.R., Gouveia, V.M. et al. Oxaprozin-Loaded Lipid Nanoparticles towards Overcoming NSAIDs Side-Effects. Pharm Res 33, 301–314 (2016). https://doi.org/10.1007/s11095-015-1788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1788-x

KEY WORDS

Navigation