Pharmaceutical Research

, Volume 32, Issue 9, pp 2851–2862 | Cite as

Local Sustained Delivery of 25-Hydroxyvitamin D3 for Production of Antimicrobial Peptides

  • Jiang Jiang
  • Guojun Chen
  • Franklin D. Shuler
  • Chi-Hwa Wang
  • Jingwei Xie
Research Paper



This study seeks to develop fiber membranes for local sustained delivery of 25-hydroxyvitamin D3 to induce the expression and secretion of LL-37 at or near the surgical site, which provides a novel therapeutic approach to minimize the risk of infections.


25-hydroxyvitamin D3 loaded poly(L-lactide) (PLA) and poly(ε-caprolactone) (PCL) fibers were produced by electrospinning. The morphology of obtained fibers was characterized using atomic force microscope (AFM) and scanning electron microscope (SEM). 25-hydroxyvitamin D3 releasing kinetics were quantified by enzyme-linked immunosorbent assay (ELISA) kit. The expression of cathelicidin (hCAP 18) and LL-37 was analyzed by immunofluorescence staining and ELISA kit. The antibacterial activity test was conducted by incubating pseudomonas aeruginosa in a monocytes’ lysis solution.


AFM images suggest that the surface of PCL fibers is smooth, however, the surface of PLA fibers is relatively rough, in particular, after encapsulation of 25-hydroxyvitamin D3. The duration of 25-hydroxyvitamin D3 release can last more than 4 weeks for all the tested samples. Plasma treatment can promote the release rate of 25-hydroxyvitamin D3. Human keratinocytes and monocytes express significantly higher levels of hCAP18/LL-37 after incubation with plasma treated and 25-hydroxyvitamin D3 loaded PCL fibers than the cells incubated with around ten times amount of free drug. After incubation with this fiber formulation for 5 days LL-37 in the lysis solutions of U937 cells can effectively kill the bacteria.


Plasma treated and 25-hydroxyvitamin D3 loaded PCL fibers induce significantly higher levels of antimicrobial peptide production in human keratinocytes and monocytes without producing cytotoxicity.


25-hydroxyvitamin D3 electrospinning fibers local sustained delivery surgical site infection 



Atomic force microscope


Colony-forming units






Dulbecco’s modified eagle medium


N, N-dimethylformamide




Enzyme-linked immunosorbent assay


Fetal bovine serum


U.S. Food and Drug Administration


Fluorescein isothiocyanate




Phosphate buffer solution






Roswell Park Memorial Institute


Scanning electron microscope



This work was supported partially from startup funds from University of Nebraska Medical Center and National Institute of General Medical Science (NIGMS) grant 2P20 GM103480-06.

Supplementary material

11095_2015_1667_MOESM1_ESM.docx (2.9 mb)
ESM 1 (DOCX 2959 kb)


  1. 1.
    Humes DJ, Lobo DN. Antisepsis, asepsis and skin preparation. Surg (Oxf). 2009;27(10):441–5.CrossRefGoogle Scholar
  2. 2.
    Reichman DE, Greenberg JA. Reducing surgical site infections: a review. Rev Obstet Gynecol. 2009;2(4):212–21.PubMedCentralPubMedGoogle Scholar
  3. 3.
    Evans RP, Clyburn TA, Moucha CS, Prokuski L. Surgical site infection prevention and control: an emerging paradigm. Instr Course Lect. 2011;60:539–43.PubMedGoogle Scholar
  4. 4.
    Awad SS. Adherence to surgical care improvement project measures and post-operative surgical site infections. Surg Infect. 2012;13(4):234–7.CrossRefGoogle Scholar
  5. 5.
    Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol. 2010;8(6):423–35.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Peleg AY, Seifert H, Paterson DL. Acinetobacterbaumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Eliopoulos GM, Maragakis LL, Perl TM. Acinetobacterbaumannii: epidemiology, antimicrobial resistance, and treatment options. Clin Infect Dis. 2008;46(8):1254–63.CrossRefGoogle Scholar
  8. 8.
    Esterly J, Richardson CL, Eltoukhy NS, Qi C, Scheetz MH. Genetic mechanisms of antimicrobial resistance of acinetobacter baumannii (Feb). Ann Pharmacother. 2011. doi: 10.1345/aph.1P084.PubMedGoogle Scholar
  9. 9.
    Begum S, Hasan F, Hussain S, Ali SA. Prevalence of multi drug resistant Acinetobacterbaumannii in the clinical samples from Tertiary Care Hospital in Islamabad, Pakistan. Pak J Med Sci. 2013;29(5):1253–8.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Neville F, Cahuzac M, Konovalov O, Ishitsuka Y, Lee KYC, Kuzmenko I, et al. Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. Biophys J. 2006;90(4):1275–87.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kemmis CM, Salvador SM, Smith KM, Welsh J. Human mammary epithelial cells express CYP27B1 and are growth inhibited by 25-hydroxyvitamin D-3, the major circulating form of vitamin D-3. J Nutr. 2006;136(4):887–92.PubMedGoogle Scholar
  12. 12.
    Seifert M, Tilgen W, Reichrath J. Expression of 25-hydroxyvitamin D-1alpha-hydroxylase (1alphaOHase, CYP27B1) splice variants in HaCaT keratinocytes and other skin cells: modulation by culture conditions and UV-B treatment in vitro. Anticancer Res. 2009;29(9):3659–67.PubMedGoogle Scholar
  13. 13.
    Viaene L, Evenepoel P, Meijers B, Vanderschueren D, Overbergh L, Mathieu C. Uremia suppresses immune signal-induced CYP27B1 expression in human monocytes. Am J Nephrol. 2012;36(6):497–508.PubMedCrossRefGoogle Scholar
  14. 14.
    Pinzone MR, Di Rosa M, Celesia BM, Condorelli F, Malaguarnera M, Madeddu G, et al. LPS and HIV gp120 modulate monocyte/macrophage CYP27B1 and CYP24A1 expression leading to vitamin D consumption and hypovitaminosis D in HIV-infected individuals. Eur Rev Med Pharmacol Sci. 2013;17(14):1938–50.PubMedGoogle Scholar
  15. 15.
    Suzuki K, Murakami T, Kuwahara-Arai K, Tamura H, Hiramatsu K, Nagaoka I. Human anti-microbial cathelicidin peptide LL-37 suppresses the LPS-induced apoptosis of endothelial cells. Int Immunol. 2011;23(3):185–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Henzler Wildman KA, Lee D-K, Ramamoorthy A. Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37. Biochemistry. 2003;42(21):6545–58.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang Z, Cherryholmes G, Shively JE. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. J Leukoc Biol. 2008;84(3):780–8.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Kahlenberg JM, Kaplan MJ. Little peptide, big effects: the role of LL-37 in inflammation and autoimmune disease. J Immunol. 2013;191(10):4895–901.PubMedCrossRefGoogle Scholar
  19. 19.
    Steinstraesser L, Lam MC, Jacobsen F, Porporato PE, Chereddy KK, Becerikli M, et al. Skin electroporation of a plasmid encoding hCAP-18/LL-37 host defense peptide promotes wound healing. Mol Ther. 2014;22(4):734–42.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Shringirishi M, Prajapati SK, Mahor A, Alok S, Yadav P, Verma A. Nanosponges: a potential nanocarrier for novel drug delivery-a review. Asian Pac J Trop Dis. 2014;4(Supplement 2):S519–26.CrossRefGoogle Scholar
  21. 21.
    Xie J, Wang C-H. Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res. 2006;23(8):1817–26.PubMedCrossRefGoogle Scholar
  22. 22.
    Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989–2006.PubMedCrossRefGoogle Scholar
  23. 23.
    Choktaweesap N, Arayanarakul K, Duangdao A, Meechaisue C, Supaphol P. Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J. 2007;39(6):622–31.CrossRefGoogle Scholar
  24. 24.
    Hwang SH, Song J, Jung Y, Kweon OY, Song H, Jang J. ElectrospunZnO/TiO2 composite nanofibers as a bactericidal agent. Chem Commun. 2011;47(32):9164–6.CrossRefGoogle Scholar
  25. 25.
    Maria Spasova DP. Electrospun chitosan-coated fibers of poly(L-lactide) and poly(L-lactide)/poly(ethylene glycol): preparation and characterization. Macromol Biosci. 2008;8(2):153–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen S, Wang G, Wu T, Zhao X, Liu S, Li G, et al. Silver nanoparticles/ibuprofen-loaded poly(L-lactide) fibrous membrane: anti-infection and anti-adhesion effects. Int J Mol Sci. 2014;15(8):14014–25.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Mohiti-Asli M, Pourdeyhimi B, Loboa EG. Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater. 2014;10(5):2096–104.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.CrossRefGoogle Scholar
  29. 29.
    Lin Xiao BW. Poly(Lactic Acid)-based biomaterials: synthesis, modification and applications. In: Dhanjoo NG, editor. Biomedical science, engineering and technology. Rijeka: Intech; 2012. p. 247–79.Google Scholar
  30. 30.
    Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, et al. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials. 2009;30(3):354–62.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Xie J, Liu W, MacEwan MR, Bridgman PC, Xia Y. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano. 2014;8(2):1878–85.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang C-H. Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater. 2014;10(3):1324–32.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Wang Q, Zhang W, Li H, Aprecio R, Wu W, Lin Y, et al. Effects of 25-hydroxyvitamin D3 on cathelicidin production and antibacterial function of human oral keratinocytes. Cell Immunol. 2013;283(1–2):45–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Harbarth S, Samore MH, Lichtenberg D, Carmeli Y. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation. 2000;101(25):2916–21.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005;6(6):551–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Yuk J-M, Shin D-M, Lee H-M, Yang C-S, Jin HS, Kim K-K, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Sørensen OE, Follin P, Johnsen AH, Calafat J, Tjabringa GS, Hiemstra PS, et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood. 2001;97(12):3951–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Strempel N, Neidig A, Nusser M, Geffers R, Vieillard J, Lesouhaitier O, et al. Human host defense peptide LL-37 stimulates virulence factor production and adaptive resistance in pseudomonas aeruginosa. PLoS One. 2013;8(12):e82240.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest. 2007;117(3):803–11.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Love JF, Tran-Winkler HJ, Wessels MR. Vitamin D and the human antimicrobial peptide LL-37 enhance group A streptococcus resistance to killing by human cells. Mbio. 2012;3(5):e00394–12.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Dixon BM, Barker T, McKinnon T, Cuomo J, Frei B, Borregaard N, et al. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res Notes. 2012;5(1):575.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Persons KS, Eddy VJ, Chadid S, Deoliveira R, Saha AK, Ray R. Anti-growth effect of 1,25-dihydroxyvitamin D3-3-bromoacetate alone or in combination with 5-amino-imidazole-4-carboxamide-1-beta-4-ribofuranoside in pancreatic cancer cells. Anticancer Res. 2010;30(6):1875–80.PubMedGoogle Scholar
  45. 45.
    Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee W, et al. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers. Biomacromolecules. 2009;10(2):237–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosa DS, Lopes DR, Calil MR. Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches. Polym Test. 2005;24(6):756–61.CrossRefGoogle Scholar
  47. 47.
    Masaki K, Kamini NR, Ikeda H, Iefuji H. Cutinase-like enzyme from the yeast cryptococcus sp. strain s-2 hydrolyzes polylactic acid and other biodegradable plastics. Appl Environ Microbiol. 2005;71(11):7548–50.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Gordon YJ, Huang LC, Romanowski EG, Yates KA, Proske RJ, Mcdermott AM. Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eyes Res. 2005;30(5):385–94.CrossRefGoogle Scholar
  49. 49.
    Dean SN, Bishop BM, Hoek ML. Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol. 2011;11(5):114–26.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Dumville JC, Gray TA, Walter CJ, Sharp CA, Page T. Dressings for the prevention of surgical site infection. Cochrane Database Syst Rev. 2011;6(7), CD003091.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jiang Jiang
    • 1
  • Guojun Chen
    • 2
  • Franklin D. Shuler
    • 3
  • Chi-Hwa Wang
    • 4
  • Jingwei Xie
    • 1
  1. 1.Department of Surgery and Mary & Dick Holland Regenerative Medicine ProgramUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Bruker Nano Surface DivisionSanta BarbaraUSA
  3. 3.Department of Orthopaedic Surgery, Joan C. Edwards School of MedicineMarshall UniversityHuntingtonUSA
  4. 4.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations