Skip to main content

Advertisement

Log in

Identification of Nitazoxanide as a Group I Metabotropic Glutamate Receptor Negative Modulator for the Treatment of Neuropathic Pain: An In Silico Drug Repositioning Study

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Drug repositioning strategies were employed to explore new therapeutic indications for existing drugs that may exhibit dual negative mGluR1/5 modulating activities as potential treatments for neuropathic pain.

Method

A customized in silico-in vitro-in vivo drug repositioning scheme was assembled and implemented to search available drug libraries for compounds with dual mGluR1/5 antagonistic activities, that were then evaluated using in vitro functional assays and, for validated hits, in an established animal model for neuropathic pain.

Results

Tizoxanide, the primary active metabolite of the FDA approved drug nitazoxanide, fit in silico pharmacophore models constructed for both mGluR1 and mGluR5. Subsequent calcium (Ca++) mobilization functional assays confirmed that tizoxanide exhibited appreciable antagonist activity for both mGluR1 and mGluR5 (IC50 = 1.8 μM and 1.2 μM, respectively). The in vivo efficacy of nitazoxanide administered by intraperitoneal injection was demonstrated in a rat model for neuropathic pain.

Conclusion

The major aim of the present study was to demonstrate the utility of an in silico-in vitro-in vivo drug repositioning protocol to facilitate the repurposing of approved drugs for new therapeutic indications. As an example, this particular investigation successfully identified nitazoxanide and its metabolite tizoxanide as dual mGluR1/5 negative modulators. A key finding is the vital importance for drug screening libraries to include the structures of drug active metabolites, such as those emanating from prodrugs which are estimated to represent 5–7% of marketed drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCDL:

Comprehensive clinical drug library

CNS:

Central nervous system

GPCR:

G-protein coupled receptor

HTS:

High-throughput screening

i.p.:

Intraperitoneal

mGluR:

Metabotropic glutamate receptor

MOE:

Molecular Operating Environment

VCDL:

Virtual clinical drug library

VS:

Virtual screening

References

  1. Center for Drug Evaluation and Research and FDA Basics. Is it true FDA is approving fewer new drugs lately? www.fda.gov/AboutFDA/Transparency/Basics/ucm247348.htm.

  2. Hurle MR, Yang L, Xie Q, Rajpal DK, Sanseau P, Agarwal P. Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther. 2013;93:335–41.

    Article  CAS  PubMed  Google Scholar 

  3. Corbett A, Williams G, Ballard C. Drug repositioning: an opportunity to develop novel treatments for Alzheimer’s disease. Pharmaceuticals (Basel). 2013;6:1304–21.

    Article  Google Scholar 

  4. Corbett A, Pickett J, Burns A, Corcoran J, Dunnett SB, Edison P, et al. Drug repositioning for Alzheimer’s disease. Nat Rev Drug Discov. 2012;11:833–46.

    Article  CAS  PubMed  Google Scholar 

  5. Law GL, Tisoncik-Go J, Korth MJ, Katze MG. Drug repurposing: a better approach for infectious disease drug discovery? Curr Opin Immunol. 2013;25:588–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bastosand LF, Coelho MM. Drug repositioning: playing dirty to kill pain. CNS Drugs. 2014;28:45–61.

    Article  Google Scholar 

  7. Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Adam A, Torres D, et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene. 2014;0. doi:10.1038/onc.2014.72

  8. Fan-Minogue H, Bodapati S, Solow-Cordero D, Fan A, Paulmurugan R, Massoud TF, et al. A c-Myc activation sensor-based high-throughput drug screening identifies an antineoplastic effect of nitazoxanide. Mol Cancer Ther. 2013;12:1896–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Tejman-Yarden N, Miyamoto Y, Leitsch D, Santini J, Debnath A, Gut J, et al. A reprofiled drug, auranofin, is effective against metronidazole-resistant Giardia lamblia. Antimicrob Agents Chemother. 2013;57:2029–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, et al. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med. 2011;3:80ps16.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ekinsand S, Williams AJ. Finding promiscuous old drugs for new uses. Pharm Res. 2011;28:1785–91.

    Article  Google Scholar 

  12. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Connand PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997;37:205–37.

    Article  Google Scholar 

  14. Ribeiro FM, Paquet M, Cregan SP, Ferguson SS. Group I metabotropic glutamate receptor signalling and its implication in neurological disease. CNS Neurol Disord Drug Targets. 2010;9:574–95.

    Article  CAS  PubMed  Google Scholar 

  15. Chiechioand S, Nicoletti F. Metabotropic glutamate receptors and the control of chronic pain. Curr Opin Pharmacol. 2012;12:28–34.

    Article  Google Scholar 

  16. Osikowicz M, Mika J, Przewlocka B. The glutamatergic system as a target for neuropathic pain relief. Exp Physiol. 2013;98:372–84.

    Article  CAS  PubMed  Google Scholar 

  17. Pitsikas N. The metabotropic glutamate receptors: potential drug targets for the treatment of anxiety disorders? Eur J Pharmacol. 2014;723:181–4.

    Article  CAS  PubMed  Google Scholar 

  18. Chaki S, Ago Y, Palucha-Paniewiera A, Matrisciano F, Pilc A. mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology. 2013;66:40–52.

    Article  CAS  PubMed  Google Scholar 

  19. Vaidya A, Jain S, Jain AK, Agrawal A, Kashaw SK, Jain SK, et al. Metabotropic glutamate receptors: a review on prospectives and therapeutic aspects. Mini Rev Med Chem. 2013;13:1967–81.

    Article  CAS  PubMed  Google Scholar 

  20. Pomierny-Chamiolo L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M. Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther. 2014;142:281–305.

    Article  CAS  PubMed  Google Scholar 

  21. D’Antoni S, Spatuzza M, Bonaccorso CM, Musumeci SA, Ciranna L, Nicoletti F, et al. Dysregulation of group-I metabotropic glutamate (mGlu) receptor mediated signalling in disorders associated with Intellectual Disability and Autism. Neurosci Biobehav Rev. 2014.

  22. Pin JP, De Colle C, Bessis AS, Acher F. New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol. 1999;375:277–94.

    Article  CAS  PubMed  Google Scholar 

  23. Owen DR. Recent advances in the medicinal chemistry of the metabotropic glutamate receptor 1 (mGlu(1)). ACS Chem Neurosci. 2011;2:394–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Rocher JP, Bonnet B, Bolea C, Lutjens R, Le Poul E, Poli S, et al. mGluR5 negative allosteric modulators overview: a medicinal chemistry approach towards a series of novel therapeutic agents. Curr Top Med Chem. 2011;11:680–95.

    Article  CAS  PubMed  Google Scholar 

  25. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60:1017–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kulkarni SS, Zou MF, Cao J, Deschamps JR, Rodriguez AL, Conn PJ, et al. Structure-activity relationships comparing N-(6-methylpyridin-yl)-substituted aryl amides to 2-methyl-6-(substituted-arylethynyl)pyridines or 2-methyl-4-(substituted-arylethynyl)thiazoles as novel metabotropic glutamate receptor subtype 5 antagonists. J Med Chem. 2009;52:3563–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lindsley CW, Bates BS, Menon UN, Jadhav SB, Kane AS, Jones CK, et al. (3-Cyano-5-fluorophenyl)biaryl negative allosteric modulators of mGlu(5): discovery of a new tool compound with activity in the OSS mouse model of addiction. ACS Chem Neurosci. 2011;2:471–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Zauhar RJ, Gianti E, Welsh WJ. Fragment-based shape signatures: a new tool for virtual screening and drug discovery. J Comput Aided Mol Des. 2013;27:1009–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hartman I, Gillies AR, Arora S, Andaya C, Royapet N, Welsh WJ, et al. Application of screening methods, shape signatures and engineered biosensors in early drug discovery process. Pharm Res. 2009;26:2247–58.

    Article  CAS  PubMed  Google Scholar 

  30. Chekmarev D, Kholodovych V, Kortagere S, Welsh WJ, Ekins S. Predicting inhibitors of acetylcholinesterase by regression and classification machine learning approaches with combinations of molecular descriptors. Pharm Res. 2009;26:2216–24.

    Article  CAS  PubMed  Google Scholar 

  31. Kortagere S, Chekmarev D, Welsh WJ, Ekins S. Hybrid scoring and classification approaches to predict human pregnane X receptor activators. Pharm Res. 2009;26:1001–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kortagere S, Chekmarev D, Welsh WJ, Ekins S. New predictive models for blood–brain barrier permeability of drug-like molecules. Pharm Res. 2008;25:1836–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang CY, Ai N, Arora S, Erenrich E, Nagarajan K, Zauhar R, et al. Identification of previously unrecognized antiestrogenic chemicals using a novel virtual screening approach. Chem Res Toxicol. 2006;19:1595–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Nagarajan K, Zauhar R, Welsh WJ. Enrichment of ligands for the serotonin receptor using the shape signatures approach. J Chem Inf Model. 2005;45:49–57.

    Article  CAS  PubMed  Google Scholar 

  35. Bragaand RC, Andrade CH. Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr Top Med Chem. 2013;13:1127–38.

    Article  Google Scholar 

  36. Zauhar RJ, Moyna G, Tian L, Li Z, Welsh WJ. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J Med Chem. 2003;46:5674–90.

    Article  CAS  PubMed  Google Scholar 

  37. Korba BE, Montero AB, Farrar K, Gaye K, Mukerjee S, Ayers MS, et al. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication. Antiviral Res. 2008;77:56–63.

    Article  CAS  PubMed  Google Scholar 

  38. Readheadand B, Dudley J. Translational bioinformatics approaches to drug development. Adv Wound Care (New Rochelle). 2013;2:470–89.

    Article  Google Scholar 

  39. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7:255–70.

    Article  CAS  PubMed  Google Scholar 

  40. Choiand SZ, Son MW. Novel botanical drug for the treatment of diabetic neuropathy. Arch Pharm Res. 2011;34:865–7.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors acknowledge the resources, encouragement and support provided by Snowdon, Inc. (Monmouth Junction, NJ, USA). WJW wishes to acknowledge partial support for this work from NIH-NIEHS P30 ES005022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Welsh.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, N., Wood, R.D. & Welsh, W.J. Identification of Nitazoxanide as a Group I Metabotropic Glutamate Receptor Negative Modulator for the Treatment of Neuropathic Pain: An In Silico Drug Repositioning Study. Pharm Res 32, 2798–2807 (2015). https://doi.org/10.1007/s11095-015-1665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1665-7

KEY WORDS

Navigation