Pharmaceutical Research

, Volume 32, Issue 6, pp 1859–1863 | Cite as

Semi-Automated Nanoprecipitation-System—An Option for Operator Independent, Scalable and Size Adjustable Nanoparticle Synthesis

  • René Rietscher
  • Carolin Thum
  • Claus-Michael Lehr
  • Marc Schneider


The preparation of nano-sized carrier systems increasingly moved into focus of pharmaceutical research and industry in the past decades. Besides the drug load and properties of the selected polymer/lipid, the size of such particles is one of the most important parameters regarding their use as efficient drug delivery systems. However, the preparation of nanoparticles with different sizes in a controlled manner is challenging, especially in terms of reproducibility and scale-up possibility. To overcome these hurdles we developed a system relying on nanoprecipitation, which meets all these requirements of an operator independent, scalable and size-adjustable nanoparticle synthesis—the Semi-Automated Nanoprecipitation-System. This system enables the adaption of the particle size to specific needs based on the process parameters—injection rate, flow rate and polymer concentration—identified within this study. The basic set-up is composed of a syringe pump and a gear pump for a precise control of the flow and injection speed of the system. Furthermore, a home-made tube-straightener guarantees a curvature-free injection point. Thus it could be shown that the production of poly(lactide-co-glycolide) nanoparticles from 150 to 600 nm with a narrow size distribution in a controlled semi-automatic manner is possible.


continuous nanoparticle preparation nanoprecipitation PLGA SAN-System scale-up 



Dynamic light scattering


Dimethyl sulfoxide


Flow rate


Injection position


Injection rate


Polydispersity index




Polyvinyl alcohol


Semi-Automated Nanoprecipitation-System


Scanning electron microscopy



This work was supported by grants from the BMBF (funding code: 13N11454) in PeTrA project “Plattform für effizienten epithelialen Transport für pharmazeutische Applikationen durch innovative partikuläre Trägersysteme”. Dr. Chiara De Rossi is thanked for technical assistance with preparing the SEM images.

René Rietscher and Carolin Thum contributed equally to this work.


  1. 1.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.CrossRefPubMedGoogle Scholar
  2. 2.
    Kammona O, Kiparissides C. Recent advances in nanocarrier-based mucosal delivery of biomolecules. J Control Release. 2012;161:781–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Goeran L, Hubert R, Gert R, Birgit S-K, Peter G, Jean-Philippe P, et al. Considerations on a definition of nanomaterial for regulatory purposes. Publications Office of the European Union; 2010.Google Scholar
  4. 4.
    Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. Nature Publishing Group. 2008;7:771–82.Google Scholar
  5. 5.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Des Rieux A, Fievez V, Garinot M, Schneider Y-J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.CrossRefPubMedGoogle Scholar
  7. 7.
    Swaminathan J, Ehrhardt C. Liposomal delivery of proteins and peptides. London: Informa UK Ltd; 2012.Google Scholar
  8. 8.
    Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.CrossRefGoogle Scholar
  9. 9.
    Beck-Broichsitter M, Rytting E, Lebhardt T, Wang X, Kissel T. Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur J Pharm Sci. 2010;41:244–53.CrossRefPubMedGoogle Scholar
  10. 10.
    François G, Katz JL. Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulisification as an alternative to ultrasonic and high-shear devices. ChemPhysChem. 2005;6:209–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res. Kluwer Academic Publishers-Plenum Publishers. 1998;15:1056–62.Google Scholar
  12. 12.
    Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. Elsevier Science BV, PO Box 211, 1000 AE Amsterdam, Netherlands. 2010;385:113–42.Google Scholar
  13. 13.
    Xie H, Smith JW. Fabrication of PLGA nanoparticles with a fluidic nanoprecipitation system. J Nanobiotechnol. 2010;8:18.CrossRefGoogle Scholar
  14. 14.
    Guan X, Martonen TB. Simulations of flow in curved tubes. Aerosol Sci Technol. Taylor & Francis. 1997;26:485–504.Google Scholar
  15. 15.
    Avila K, Moxey D, de Lozar A, Avila M, Barkley D, Hof B. The onset of turbulence in pipe flow. Science. 2011;333:192–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Keck CM, Müller RH. Photonenkorrelationsspektroskopie. Mod Pharm Technol. 2009;56–60.Google Scholar
  17. 17.
    Plasari E, Grisoni PH, Villermaux J. Influence of process parameters on the precipitation of organic nanoparticles by drowning-out. Chem Eng Res Des. 1997;75:237–44.CrossRefGoogle Scholar
  18. 18.
    Chorny M, Fishbein I, Danenberg HD, Golomb G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002;83:389–400.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • René Rietscher
    • 1
  • Carolin Thum
    • 2
  • Claus-Michael Lehr
    • 1
    • 3
  • Marc Schneider
    • 2
  1. 1.Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL)Saarland UniversitySaarbrueckenGermany
  2. 2.Institute for Pharmaceutics and BiopharmacyPhilipps University MarburgMarburgGermany
  3. 3.Biopharmaceutics and Pharmaceutical Technology, Department of PharmacySaarland UniversitySaarbrueckenGermany

Personalised recommendations