Advertisement

Pharmaceutical Research

, Volume 32, Issue 4, pp 1425–1437 | Cite as

The Influence of Polysorbate 80 on the Radiochemical Synthesis of a PET Tracer in the FASTlab

  • Wai Lam Yip
  • Sverre Arne Sande
  • David Grace
  • Dirk Jan in’t Veld
  • Per Christian Sontum
  • Tina Solvang
  • Knut Dyrstad
Research Paper
  • 249 Downloads

Abstract

Purpose

The aim of current study was to investigate the influence of a common non-ionic surfactant, polysorbate 80 (PS80), on radioactive labelling process of a novel PET tracer, [18F]Flutemetamol.

Methods

Ferrous oxidation-xylenol orange (FOX) assay, in addition to UV/VIS and 1H NMR spectroscopies were applied to characterise the composition of the PS80 solution after storage. Multivariate Curve Resolution (MCR) and PLS analysis was used to establish correlation between quality of the PS80 solution and the RCP obtained after labelling.

Results

The levels of unsaturated fatty acid moieties of PS80 were negatively correlated to RCP of [18F]Flutemetamol after synthesis. This explains the slight increase in RCP when stored PS80 solutions were applied in the synthesis. The mechanism behind this observation is suggested to be related to radiation induced radical formation in the unsaturated fatty acids, which subsequently causes instability of the PET tracer. UV/VIS spectroscopy was demonstrated to have the ability as a possible control tool for quality assurance of the studied radioactive labelling process.

Conclusions

The presence of unsaturated fatty acid moieties in PS80 was found to be one of the most important factors responsible for the reduction in RCP of [18F]Flutemetamol after synthesis.

KEY WORDS

FASTlab [18F]Flutemetamol polysorbate 80 radioactive labelling 

ABBREVIATIONS

MCR

Mulitivariate curve resolution

PET

Positron emission tomography

PLS

Partial least squares

PS80

Polysorbate 80

RCP

Radiochemical purity

Notes

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Ingrid Henriksen, Erlend Hvattum, Wenche Nordby and Arnfinn Andersen for scientific discussion. Svein Kvåle, Thanushan Rajanayagam, Lone Omtvedt and Grete Madsen for laboratory assistance.

References

  1. 1.
    Sartor Oand Venugopal D. Radiopharmaceuticals. In: Figg WD, Chau CH, Small EJ, editors. Drug management of prostate cancer. New York: Springer; 2010. p. 255–66.CrossRefGoogle Scholar
  2. 2.
    Adam MJ, Wilbur DS. Radiohalogens for imaging and therapy. Chem Soc Rev. 2005;34(2):153–63.CrossRefPubMedGoogle Scholar
  3. 3.
    Mountz JM, Alavi A, Mountz JD. Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(12):719–28.CrossRefPubMedGoogle Scholar
  4. 4.
    Hannestad J. The application of PET imaging in psychoneuroimmunology research. In: Yan Q, editor. Psychoneuroimmunology, Vol. 934. New York: Humana Press; 2012. p. 325–53.CrossRefGoogle Scholar
  5. 5.
    Sasser TA, Van Avermaete AE, White A, Chapman S, Johnson JR, Van Avermaete T, et al. Bacterial infection probes and imaging strategies in clinical nuclear medicine and preclinical molecular imaging. Curr Top Med Chem. 2013;13(4):479-87.Google Scholar
  6. 6.
    Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-pet for imaging β-amyloid pathology. JAMA. 2011;305(3):275–83.CrossRefPubMedGoogle Scholar
  7. 7.
    Barthel H, Gertz H-J, Dresel S, Peters O, Bartenstein P, Buerger K, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424–35.CrossRefPubMedGoogle Scholar
  8. 8.
    Nelissen N, Van Laere K, Thurfjell L, Owenius R, Vandenbulcke M, Koole M, et al. Phase 1 study of the Pittsburgh compound B derivative18F- flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50(8):1251–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment a phase 2 trial. Ann Neurol. 2010;68(3):319–29.CrossRefPubMedGoogle Scholar
  10. 10.
    Hatashita S, Yamasaki H, Suzuki Y, Tanaka K, Wakebe D, Hayakawa H. [18F]Flutemetamol amyloid-beta PET imaging compared with [11C]PIB across the spectrum of Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2014;41(2):290-300.Google Scholar
  11. 11.
    Leinonen V, Rinne JO, Virtanen KA, Eskola O, Rummukainen J, Huttunen J, et al. Positron emission tomography with [18F]flutemetamol and [11C]PiB for in vivo detection of cerebral cortical amyloid in normal pressure hydrocephalus patients. Eur J Neurol. 2013;20(7):1043–52.CrossRefPubMedGoogle Scholar
  12. 12.
    Thurfjell L, Lotjonen J, Lundqvist R, Koikkalainen J, Soininen H, Waldemar G, et al. Combination of biomarkers: PET [18F]flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neuro-Degener Dis. 2012;10(1–4):246–9.CrossRefGoogle Scholar
  13. 13.
    Thonon D, Goblet D, Goukens E, Kaisin G, Paris J, Aerts J, et al. Fully automated preparation and conjugation of N-succinimidyl 4-[18F]Fluorobenzoate ([18F]SFB) with RGD peptide using a GE FASTlab™ synthesizer. Mol Imaging Biol. 2011;13(6):1088–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Swahn B-M, Sandell J, Pyring D, Bergh M, Jeppsson F, Juréus A, et al. Synthesis and evaluation of pyridylbenzofuran, pyridylbenzothiazole and pyridylbenzoxazole derivatives as 18F-PET imaging agents for β-amyloid plaques. Bioorg Med Chem Lett. 2012;22(13):4332–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Hvattum E, Yip WL, Grace D, Dyrstad K. Characterization of polysorbate 80 with liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy: specific determination of oxidation products of thermally oxidized polysorbate 80. J Pharm Biomed Anal. 2012;62:7–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods in Enzymology, Vol. Volume 233. London: Academic; 1994. p. 182–9.Google Scholar
  17. 17.
    Smallcombe SH, Patt SL, Keifer PA. WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J Magn Reson Ser A. 1995;117(2):295–303.CrossRefGoogle Scholar
  18. 18.
    Ha E, Wang W, Wang YJ. Peroxide formation in polysorbate 80 and protein stability. J Pharm Sci. 2002;91(10):2252–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Kishore RSK, Pappenberger A, Dauphin IB, Ross A, Buergi B, Staempfli A, et al. Degradation of polysorbates 20 and 80: studies on thermal autoxidation and hydrolysis. J Pharm Sci. 2011;100(2):721–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Donbrow M, Azaz E, Pillersdorf A. Autoxidation of polysorbates. J Pharm Sci. 1978;67(12):1676–81.CrossRefPubMedGoogle Scholar
  21. 21.
    Sehat N, Yurawecz M, Roach JG, Mossoba M, Kramer JG, Ku Y. Silver-ion high-performance liquid chromatographic separation and identification of conjugated linoleic acid isomers. Lipids. 1998;33(2):217–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Kishore R, Kiese S, Fischer S, Pappenberger A, Grauschopf U, Mahler H-C. The degradation of polysorbates 20 and 80 and its potential impact on the stability of biotherapeutics. Pharm Res. 2011;28(5):1194–210.CrossRefPubMedGoogle Scholar
  23. 23.
    Hjelstuen OK, Svadberg A, Olberg DE, Rosser M. Standardization of fluorine-18 manufacturing processes: new scientific challenges for PET. Eur J Pharm Biopharm. 2011;78(3):307–13.CrossRefPubMedGoogle Scholar
  24. 24.
    Yao J, Dokuru DK, Noestheden M, Park SS, Kerwin BA, Jona J, et al. A quantitative kinetic study of polysorbate autoxidation: the role of unsaturated fatty acid ester substituents. Pharm Res. 2009;26(10):2303–13.CrossRefPubMedGoogle Scholar
  25. 25.
    Herman A, Boone T, Lu H. Characterization, formulation, and stability of Neupogen® (Filgrastim), a recombinant human granulocyte-colony stimulating factor. In: Pearlman Rand Wang YJ, editor. Formulation, characterization, and stability of protein drugs: case histories, Vol. 9. US: Springer; 2002. p. 303–28.CrossRefGoogle Scholar
  26. 26.
    Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.CrossRefPubMedGoogle Scholar
  27. 27.
    Peter Wuelfing W, Kosuda K, Templeton AC, Harman A, Mowery MD, Reed RA. Polysorbate 80 UV/vis spectral and chromatographic characteristics - defining boundary conditions for use of the surfactant in dissolution analysis. J Pharm Biomed Anal. 2006;41(3):774–82.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wai Lam Yip
    • 1
  • Sverre Arne Sande
    • 1
  • David Grace
    • 2
  • Dirk Jan in’t Veld
    • 2
  • Per Christian Sontum
    • 3
  • Tina Solvang
    • 4
  • Knut Dyrstad
    • 5
  1. 1.School of Pharmacy, Department of PharmacyUniversity of OsloOsloNorway
  2. 2.GE Healthcare, Life SciencesOsloNorway
  3. 3.Phoenix Solutions ASMossNorway
  4. 4.Norwegian Medical Cyclotron Center ASOsloNorway
  5. 5.KD MetrixOsloNorway

Personalised recommendations