Pharmaceutical Research

, Volume 32, Issue 4, pp 1186–1199 | Cite as

Molecular Adjuvants Based on Nonpyrogenic Lipophilic Derivatives of norAbuMDP/GMDP Formulated in Nanoliposomes: Stimulation of Innate and Adaptive Immunity

  • Pavlína Turánek Knotigová
  • Daniel Zyka
  • Josef Mašek
  • Anna Kovalová
  • Michal Křupka
  • Eliška Bartheldyová
  • Pavel Kulich
  • Štěpán Koudelka
  • Róbert Lukáč
  • Zuzana Kauerová
  • Antonín Vacek
  • Milada Stuchlová Horynová
  • Alois Kozubík
  • Andrew D. Miller
  • Ladislav Fekete
  • Irena Kratochvílová
  • Jan Ježek
  • Miroslav Ledvina
  • Milan Raška
  • Jaroslav Turánek
Research Paper



The aim of this work was to demonstrate an immunostimulatory and adjuvant effect of new apyrogenic lipophilic derivatives of norAbuMDP and norAbuGMDP formulated in nanoliposomes.


Nanoliposomes and metallochelating nanoliposomes were prepared by lipid film hydration and extrusion methods. The structure of the liposomal formulation was studied by electron microscopy, AF microscopy, and dynamic light scattering. Sublethal and lethal γ-irradiation mice models were used to demonstrate stimulation of innate immune system. Recombinant Hsp90 antigen (Candida albicans) bound onto metallochelating nanoliposomes was used for immunisation of mice to demonstrate adjuvant activities of tested compounds.


Safety and stimulation of innate and adaptive immunity were demonstrated on rabbits and mice. The liposomal formulation of norAbuMDP/GMDP was apyrogenic in rabbit test and lacking any side effect in vivo. Recovery of bone marrow after sublethal γ-irradiation as well as increased survival of mice after lethal irradiation was demonstrated. Enhancement of specific immune response was demonstrated for some derivatives incorporated in metallochelating nanoliposomes with recombinant Hsp90 protein antigen.


Liposomal formulations of new lipophilic derivatives of norAbuMDP/GMDP proved themselves as promising adjuvants for recombinant vaccines as well as immunomodulators for stimulation of innate immunity and bone-marrow recovery after chemo/radio therapy of cancer.


Adjuvant Bone-marrow radioprotection Liposome Muramyl dipeptide Vaccine 



Atomic force microscopy


Antigen presenting cell


Complete Freund’s adjuvant


Cell-mediated immunity


Dynamic light scattering


1,2-Dioleoyl-sn-Glycero-3-[[N (5-Amino-1-Carboxypentyl) iminodiAcetic Acid] Succinyl] (Nickel Salt)


Electron microscopy


Egg phosphatidylcholine


Granulocyte-monocyte colony-forming cells


γ-D-glutamyl-meso-diaminopimelic acid


Muramyl dipeptide


Muramyl tripeptide phosphatidylethanolamine

MT01 – MT08

Lipophilic derivatives based on norAbuMDP and norAbuGMDP


NACHT LRR and PYD domains-containing protein 3


nucleotide-binding oligomerization domain




NorAbu-glucosaminylmuramyl dipeptide


1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (sodium salt)


Recombinant Heat shock protein 90


Size exclusion chromatography


Toll-like receptor



By this paper we would like to revere the memory of deceased MUDr. Antonín Vacek, CSc., who pioneered the field of the effect of γ-rays on the immune system and haematopoiesis. His scientific work contributed to the cosmic flight of spaceships with human crew and was awarded by NASA and Russian space agency within the programme Intercosmos. Moreover, we would like to revere the memory of Prof. Antonín Holý, deceased in 2012, who pioneered the field of modern antiviral drugs. The development of new norAbuMDP/GMDP analogues would not have been possible without his long-lasting support to this project.

This Work was Supported by Grants

GAP304/10/1951 to J.T, M.L, M.R; TAČR TA01011165 J.T, M.L, M.R ; GAP503/12/G147 to J.T; FNUSA-ICRC CZ.1.07/2.3.00/30.0043; The Ministry of Education, Youth and Sports of the Czech Republic (CZ.1.07/2.3.00/20.0164) to J.T. and M.R.; LF_2014_020 to M.K. and M.R., the projects MZE0002716202 of the Czech Ministry of Agriculture. Special thanks to the project AdmireVet (CZ.1.05/2.1.00/01.0006 - ED0006/01/01 from the Czech Ministry of Education) for permit the access to the scanning electron microscope.

Conflict of Interest

The authors have declared that no conflict of interest exists. I certify that this manuscript, or any part of it, has not been published and will not be submitted elsewhere for publication while being considered by the journal Pharmaceutical Research.

Supplementary material

11095_2014_1516_MOESM1_ESM.pdf (616 kb)
ESM 1 (PDF 616 kb)


  1. 1.
    Ellouz F, Adam A, Ciorbaru R, Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun. 1974;59(4):1317–25.CrossRefPubMedGoogle Scholar
  2. 2.
    Parant M. Biologic properties of a new synthetic adjuvant, muramyl dipeptide (MDP). Springer Semin Immunopathol. 1979;2(1):101–18.CrossRefGoogle Scholar
  3. 3.
    Takada H, Kotani S. Immunopharmacological activities of synthetic muramyl-peptides. In: Stewart-Tull D, Davier M, editors. Immunology of the bacterial cell envelope. Chichester: Willey; 1985. p. 119–52.Google Scholar
  4. 4.
    Adam A, Lederer E. Muramyl peptides - immunomodulators, sleep factors, and vitamins. Med Res Rev. 1984;4(2):111–52.CrossRefPubMedGoogle Scholar
  5. 5.
    Parant M, Chedid L. Stimulation of non-specific resistance to infections by synthetic immunoregulatory agents. Infection. 1984;12(3):230–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Yoo YC, Saiki I, Sato K, Azuma I. MDP-lys (L18), a lipophilic derivative of muramyl dipeptide, inhibits the metastasis of hematogenous and non-hematogenous tumors in mice. Vaccine. 1994;12(2):175–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Lecrec C, Vogel RF. Synthetic immunomodulators and synthetic vaccines. Crit Rev Ther Drug Carrier Syst. 1986;2:353–406.Google Scholar
  8. 8.
    Matter A. Effects of muramyldipeptide (MDP) in cell-mediated-immunity - comparison between in vitro and in vivo systems. Cancer Immunol Immunother. 1979;6(4):201–10.CrossRefGoogle Scholar
  9. 9.
    Warren HS, Vogel FR, Chedid LA. Current status of immunological adjuvants. Ann Rev Immunol. 1986;4:369–88.CrossRefGoogle Scholar
  10. 10.
    Ando K, Mori K, Corradini N, Redini F, Heymann D. Mifamurtide for the treatment of nonmetastatic osteosarcoma. Expert Opin Pharmacother. 2011;12(2):285–92.CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    No authors listed. Mifamurtide: osteosarcoma: ineffective and harmful. Prescrire Int. 2011;20:89Google Scholar
  12. 12.
    Lefrancier P, Lederer E. Muramyl-peptides. Pure Appl Chem. 1987;59(3):449–54.CrossRefGoogle Scholar
  13. 13.
    McLaughlin CA, Schwartzman SM, Horner BL, Jones GH, Moffatt JG, Nestor JJ, et al. Regression of tumors in guinea-pigs after treatment with synthetic muramyl dipeptides and trehalose dimycolate. Science. 1980;208(4442):415–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Altin JG, Parish CR. Liposomal vaccines - targeting the delivery of antigen. Methods. 2006;40(1):39–52.CrossRefPubMedGoogle Scholar
  15. 15.
    Krupka M, Masek J, Bartheldyova E, Turanek Knotigova P, Plockova J, Korvasova Z, et al. Enhancement of immune response towards non-lipidized Borrelia burgdorferi recombinant OspC antigen by binding onto the surface of metallochelating nanoliposomes with entrapped lipophilic derivatives of norAbuMDP. J Control Release. 2012;160(2):374–81.CrossRefPubMedGoogle Scholar
  16. 16.
    Masek J, Bartheldyova E, Korvasova Z, Skrabalova M, Koudelka S, Kulich P, et al. Immobilization of histidine-tagged proteins on monodisperse metallochelation liposomes: preparation and study of their structure. Anal Biochem. 2011;408(1):95–104.CrossRefPubMedGoogle Scholar
  17. 17.
    Raska M, Belakova J, Wudattu NK, Kafkova L, Ruzickova K, Sebestova M, et al. Comparison of protective effect of protein and DNA vaccines hsp90 in murine model of systemic candidiasis. Folia Microbiol. 2005;50(1):77–82.CrossRefGoogle Scholar
  18. 18.
    Zachova K, Krupka M, Chamrad I, Belakova J, Horynova M, Weigl E, et al. Novel modification of growth medium enables efficient E. coli expression and simple purification of an endotoxin-free recombinant murine Hsp70 protein. J Microbiol Biotechnol. 2009;19(7):727–33.PubMedGoogle Scholar
  19. 19.
    Turanek J. Fast-protein liquid-chromatography system as a tool for liposome preparation by the extrusion procedure. Anal Biochem. 1994;218(2):352–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Masek J, Bartheldyova E, Turanek-Knotigova P, Skrabalova M, Korvasova Z, Plockova J, et al. Metallochelating liposomes with associated lipophilised norAbuMDP as biocompatible platform for construction of vaccines with recombinant His-tagged antigens: preparation, structural study and immune response towards rHsp90. J Control Release. 2011;151(2):193–201.CrossRefPubMedGoogle Scholar
  21. 21.
    Turanek J, Zaluska D, Hofer M, Vacek A, Ledvina M, Jezek J. Stimulation of haemopoiesis and protection of mice against radiation injury by synthetic analogues of muramyldipeptide incorporated in liposomes. Int J Immunopharmacol. 1997;19(9–10):611–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Kasna A, Turanek J, Vacek A, Zaluska D, Knotigova P, Masek K. Restoration of femoral GM-CFC progenitors in sublethally irradiated mice of various ages treated with liposomal adamantylamide dipeptide. Int Immunopharmacol. 2004;4(8):1099–106.CrossRefPubMedGoogle Scholar
  23. 23.
    Dzierzbicka K, Wardowska A, Trzonkowski P. Recent developments in the synthesis and biological activity of muramylpeptides. Curr Med Chem. 2011;18(16):2438–51.CrossRefPubMedGoogle Scholar
  24. 24.
    Traub S, von Aulock S, Hartung T, Hermann C. MDP and other muropeptides - direct and synergistic effects on the immune system. J Endotoxin Res. 2006;12(2):69–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Azuma I, Seya T. Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol. 2001;1(7):1249–59.CrossRefPubMedGoogle Scholar
  26. 26.
    Sakamoto S, Okawa T, Ogawa N. Therapeutic effect of microtasin on cancer patients with leucopenia during radiation therapy. J New Rem Clin. 1989;39:1407–22.Google Scholar
  27. 27.
    Korvasova Z, Drasar L, Masek J, Knotigova PT, Kulich P, Matiasovic J, et al. Antiviral effect of HPMPC (Cidofovir (R)), entrapped in cationic liposomes: In vitro study on MDBK cell and BHV-1 virus. J Control Release. 2012;160(2):330–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Koudelka S, Turanek-Knotigova P, Masek J, Korvasova Z, Skrabalova M, Plockova J, et al. Liposomes with high encapsulation capacity for paclitaxel: preparation, characterisation and in vivo anticancer effect. J Pharm Sci. 2010;99(5):2309–19.PubMedGoogle Scholar
  29. 29.
    Marischen L, Wesch D, Oberg HH, Rosenstiel P, Trad A, Shomali M, et al. Functional expression of NOD2 in freshly isolated human peripheral blood gamma delta T cells. Scand J Immunol. 2011;74(2):126–34.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim HS, Shin TH, Yang SR, Seo MS, Kim DJ, Kang SK, et al. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood. PLoS One. 2010;5(10):e15369.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Scott MJ, Chen C, Sun QA, Billiar TR. Hepatocytes express functional NOD1 and NOD2 receptors: a role for NOD1 in hepatocyte CC and CXC chemokine production. J Hepatol. 2010;53(4):693–701.CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Oussoren C, Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev. 2001;50(1–2):143–56.CrossRefPubMedGoogle Scholar
  33. 33.
    Tenu JP, Adam A, Souvannavong V, Yapo A, Petit JF, Douglas K. Photoaffinity-labeling of macrophages and lymphocyte-B using I-125-labeled aryl-azide derivatives of muramyldipeptide. Int J Immunopharmacol. 1989;11(6):653–61.CrossRefPubMedGoogle Scholar
  34. 34.
    Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003;4(7):702–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Girardin SE, Travassos LH, Herve M, Blanot D, Boneca IG, Philpott DJ, et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem. 2003;278(43):41702–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Fritz JH, Ferrero RL, Philpott DJ, Girardin SE. NOD-like proteins in immunity, inflammation and disease. Nat Immunol. 2006;7(12):1250–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27(4):549–59.CrossRefPubMedGoogle Scholar
  38. 38.
    Petterson T, Jendholm J, Mansson A, Bjartell A, Riesbeck K, Cardell LO. Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and toll-like receptors. J Leukoc Biol. 2011;89(2):177–87.CrossRefPubMedGoogle Scholar
  39. 39.
    Shaw MH, Reimer T, Sanchez-Valdepenas C, Warner N, Kim YG, Fresno M, et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. Nat Immunol. 2009;10(12):1267–74.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14(21):1929–34.CrossRefPubMedGoogle Scholar
  41. 41.
    Raska M, Belakova J, Krupka M, Weigl E. Candidiasis - do we need to fight or to tolerate the Candida fungus. Folia Microbiol. 2011;52:297–312.CrossRefGoogle Scholar
  42. 42.
    Orsag P, Kvardova V, Raskova M, Miller AD, Ledvina M, Turanek J. Quantitative real-time PCR study on persistence of pDNA vaccine pVax-Hsp60 TM814 in beef muscles. Genet Vaccines Ther. 2008;6:1–11.CrossRefGoogle Scholar
  43. 43.
    Turanek J, Kasna A, Koudela B, Ledvina M, Miller AD. Stimulation of innate immunity in newborn kids against Cryptosporidium parvum infection-challenge by intranasal/per-oral administration of liposomal formulation of N-L 18-norAbu-GDMP adjuvant. Parasitology. 2005;131:601–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Turanek J, Ledvina M, Kasna A, Vacek A, Hribalova V, Krejci J, et al. Liposomal preparations of muramyl glycopeptides as immunomodulators and adjuvants. Vaccine. 2006;24:90–1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Pavlína Turánek Knotigová
    • 1
  • Daniel Zyka
    • 2
  • Josef Mašek
    • 1
  • Anna Kovalová
    • 2
  • Michal Křupka
    • 3
  • Eliška Bartheldyová
    • 1
  • Pavel Kulich
    • 1
  • Štěpán Koudelka
    • 1
    • 8
  • Róbert Lukáč
    • 1
  • Zuzana Kauerová
    • 1
  • Antonín Vacek
    • 1
  • Milada Stuchlová Horynová
    • 3
  • Alois Kozubík
    • 4
  • Andrew D. Miller
    • 5
  • Ladislav Fekete
    • 6
  • Irena Kratochvílová
    • 6
  • Jan Ježek
    • 2
  • Miroslav Ledvina
    • 7
  • Milan Raška
    • 3
  • Jaroslav Turánek
    • 1
  1. 1.Department of Pharmacology and ImmunotherapyVeterinary Research InstituteBrnoCzech Republic
  2. 2.Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
  3. 3.Faculty of Medicine and Dentistry, Department of ImmunologyPalacky University Olomouc,OlomoucCzech Republic
  4. 4.Institute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.iBrnoCzech Republic
  5. 5.Pharmaceutical Sciences DivisionKing’s College LondonLondonUK
  6. 6.Institute of PhysicsCzech Academy of SciencesPragueCzech Republic
  7. 7.Department of Chemistry of Natural CompoundsInstitute of Chemical TechnologyPrague 6Czech Republic
  8. 8.International Research CenterSt. Anne’s University Hospital BrnoBrnoCzech Republic

Personalised recommendations