Pharmaceutical Research

, Volume 32, Issue 3, pp 1002–1016 | Cite as

Liposome Encapsulated Albumin-Paclitaxel Nanoparticle for Enhanced Antitumor Efficacy

  • Hima Bindu Ruttala
  • Young Tag Ko
Research Paper



Albumin nanoparticles have been explored as a promising delivery system for various therapeutic agents. One limitation of such formulations is their poor colloidal stability in vivo. Present study aimed at enhancing the chemotherapeutic potential of paclitaxel by improving the colloidal stability and pharmacokinetic properties of albumin-paclitaxel nanoparticles (APNs) such as Abraxane®.


This was accomplished by encapsulating the preformed APNs into PEGylated liposomal bilayer by thin-film hydration/extrusion technique.


The resulting liposome-encapsulated albumin-paclitaxel hybrid nanoparticles (L-APNs) were nanosized (~200 nm) with uniform spherical dimensions. The successful incorporation of albumin-paclitaxel nanoparticle (NP) in liposome was confirmed by size exclusion chromatography analysis. Such hybrid NP showed an excellent colloidal stability even at 100-fold dilutions, overcoming the critical drawback associated with simple albumin-paclitaxel NP system. L-APNs further showed higher cytotoxic activity towards B16F10 and MCF-7 cells than APN; this effect was characterized by arrest at the G2/M phase and a higher prevalence of apoptotic subG1 cells. Finally, pharmacokinetic and biodistribution studies in tumor mice demonstrated that L-APNs showed a significantly enhanced plasma half-life, and preferential accumulation in the tumor.


Taken together, the data indicate that L-APNs can be promising therapeutic vehicles for enhanced delivery of PTX to tumor sites.


albumin nanoparticle colloidal stability liposome paclitaxel pharmacokinetic 



Albumin-paclitaxel nanoparticles


Confocal laser scanning microscopy


Dynamic light scattering


Differential scanning calorimetry


Fluorescence Activated Cell Sorting (Flow Cytometry)


High performance liquid chromatography


Liposome-encapsulated albumin-paclitaxel hybrid nanoparticles


Liquid chromatography-tandem mass spectrometry






X-ray diffraction



This research was supported by the Basic Science Research Program of Korean National Research Foundation (NRF-20110007794).

Supplementary material

11095_2014_1512_MOESM1_ESM.docx (595 kb)
ESM 1 (DOCX 594 kb)


  1. 1.
    Rowinsky EK, Cazenave LA, Donehower RC. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst. 1990;82(15):1247–59.CrossRefPubMedGoogle Scholar
  2. 2.
    Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235(1):179–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Weiss RB, Donehower R, Wiernik P, Ohnuma T, Gralla R, Trump D, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8(7):1263–8.PubMedGoogle Scholar
  4. 4.
    Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F. Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine. 2010;6(5):689–97.CrossRefPubMedGoogle Scholar
  5. 5.
    Bernabeu E, Helguera G, Legaspi MJ, Gonzalez L, Hocht C, Taira C, et al. Paclitaxel-loaded PCL–TPGS nanoparticles: In vitro and in vivo performance compared with Abraxane®. Colloids Surf B: Biointerfaces. 2014;113:43–50.CrossRefPubMedGoogle Scholar
  6. 6.
    Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Fan T, Takayama K, Hattori Y, Maitani Y. Formulation optimization of paclitaxel carried by PEGylated emulsions based on artificial neural network. Pharm Res. 2004;21(9):1692–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Huh KM, Min HS, Lee SC, Lee HJ, Kim S, Park K. A new hydrotropic block copolymer micelle system for aqueous solubilization of paclitaxel. J Control Release. 2008;126(2):122–9.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull. 2001;49(11):1444–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X, Zhou J, Wang Y, Zhu Z, Lu Y, Wei Y, et al. A phase I clinical and pharmacokinetic study of paclitaxel liposome infused in non-small cell lung cancer patients with malignant pleural effusions. Eur J Cancer. 2010;46(8):1474–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Xiao K, Luo J, Fowler WL, Li Y, Lee JS, Xing L, et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials. 2009;30(30):6006–16.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Xie Z, Guan H, Chen X, Lu C, Chen L, Hu X, et al. A novel polymer–paclitaxel conjugate based on amphiphilic triblock copolymer. J Control Release. 2007;117(2):210–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother. 2006;7(8):1041–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Sparreboom A, Scripture CD, Trieu V, Williams PJ, De T, Yang A, et al. Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clin Cancer Res. 2005;11(11):4136–43.CrossRefPubMedGoogle Scholar
  15. 15.
    Devalapally H, Duan Z, Seiden MV, Amiji MM. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin Cancer Res. 2008;14(10):3193–203.CrossRefPubMedGoogle Scholar
  16. 16.
    Koudelka S, Turanek J. Liposomal paclitaxel formulations. J Control Release. 2012;163(3):322–34.CrossRefPubMedGoogle Scholar
  17. 17.
    Hyodo K, Yamamoto E, Suzuki T, Kikuchi H, Asano M, Ishihara H. Development of liposomal anticancer drugs. Biol Pharm Bull. 2013;36(5):703–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Ko YT, Falcao C, Torchilin VP. Cationic liposomes loaded with proapoptotic peptide D-(KLAKLAK) 2 and Bcl-2 antisense oligodeoxynucleotide G3139 for enhanced anticancer therapy. Mol Pharm. 2009;6(3):971–7.CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Ewe A, Schaper A, Barnert S, Schubert R, Temme A, Bakowsky U, et al. Storage stability of optimal liposome–polyethylenimine complexes (lipopolyplexes) for DNA or siRNA delivery. Acta Biomater. 2014;10(6):2663–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Liu M, Gan L, Chen L, Xu Z, Zhu D, Hao Z, et al. Supramolecular core–shell nanosilica@ liposome nanocapsules for drug delivery. Langmuir. 2012;28(29):10725–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Ko YT, Kale A, Hartner WC, Papahadjopoulos-Sternberg B, Torchilin VP. Self-assembling micelle-like nanoparticles based on phospholipid–polyethyleneimine conjugates for systemic gene delivery. J Control Release. 2009;133(2):132–8.CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227–34.CrossRefGoogle Scholar
  23. 23.
    Bansal A, Kapoor D, Kapil R, Chhabra N, Dhawan S. Design and development of paclitaxel-loaded bovine serum albumin nanoparticles for brain targeting. Acta Pharma. 2011;61(2):141–56.Google Scholar
  24. 24.
    Paal K, Muller J, Hegedus L. High affinity binding of paclitaxel to human serum albumin. Eur J Biochem. 2001;268(7):2187–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98(5):335–44.CrossRefPubMedGoogle Scholar
  26. 26.
    Trynda-Lemiesz L. Paclitaxel–HSA interaction. Binding sites on HSA molecule. Bioorg Med Chem. 2004;12(12):3269–75.CrossRefPubMedGoogle Scholar
  27. 27.
    Trynda-Lemiesz L, Luczkowski M. Human serum albumin: spectroscopic studies of the paclitaxel binding and proximity relationships with cisplatin and adriamycin. J Inorg Biochem. 2004;98(11):1851–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Hiremath JG, Khamar NS, Palavalli SG, Rudani CG, Aitha R, Mura P. Paclitaxel loaded carrier based biodegradable polymeric implants: preparation and in vitro characterization. Saudi Pharm J. 2013;21(1):85–91.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol. 2011;670(2):372–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li SD. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, Abraxane, in mouse tumor models with significant control of metastases. J Control Release. 2012;162(3):575–81.CrossRefPubMedGoogle Scholar
  31. 31.
    Araki T, Kono Y, Ogawara KI, Watanabe T, Ono T, Kimura T, et al. Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer. Biol Pharm Bull. 2012;35(8):1306–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, et al. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharm Res. 2014;31(5):1302–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Raymond E, Hanauske A, Faivre S, Izbicka E, Clark G, Rowinsky EK, et al. Effects of prolonged versus short-term exposure paclitaxel (Taxol (R)) on human tumor colonyforming units. Anti Cancer Drugs. 1997;8(4):379–85.CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang L, Xu Y, Liu Q, Tang Y, Ge L, Zheng C, et al. A nontoxic disulfide bond reducing method for lipophilic drug-loaded albumin nanoparticle preparation: formation dynamics, influencing factors and formation mechanisms investigation. Int J Pharm. 2013;443(1):80–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Lee IH, Park YT, Roh K, Chung H, Kwon IC, Jeong SY. Stable paclitaxel formulations in oily contrast medium. J Control Release. 2005;102(2):415–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang L, He Y, Ma G, Song C, Sun H. Paclitaxel-loaded polymeric micelles based on poly (ɛ-caprolactone)-poly (ethylene glycol)-poly (γ-caprolactone) triblock copolymers: in vitro and in vivo evaluation. Nanomedicine. 2012;8(6):925–34.CrossRefPubMedGoogle Scholar
  37. 37.
    Ramasamy T, Kim J, Choi HG, Yong CS, Kim JO. Novel dual drug-loaded block ionomer complex micelles for enhancing the efficacy of chemotherapy treatments. J Biomed Nanotechnol. 2014;10(7):1304–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhu Z, Li Y, Li X, Li R, Jia Z, Liu B, et al. Paclitaxel-loaded poly (N-vinylpyrrolidone)- b-poly (ε-caprolactone) nanoparticles: preparation and antitumor activity in vivo. J Control Release. 2010;142(3):438–46.CrossRefPubMedGoogle Scholar
  39. 39.
    Cho HJ, Yoon IS, Yoon HY, Koo H, Jin YJ, Ko SH, et al. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials. 2012;33(4):1190–200.CrossRefPubMedGoogle Scholar
  40. 40.
    Termsarasab U, Cho HJ, Kim DH, Chong S, Chung SJ, Shim CK, et al. Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int J Pharm. 2013;441(1):373–80.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int J Pharm. 2007;338(1):317–26.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhang W, Shi Y, Chen Y, Yu S, Hao J, Luo J, et al. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur J Pharm Biopharm. 2010;75(3):341–53.CrossRefPubMedGoogle Scholar
  43. 43.
    Ramasamy T, Kim JH, Choi JY, Tran TH, Choi HG, Yong CS, et al. pH sensitive polyelectrolyte complex micelles for highly effective combination chemotherapy. J Mater Chem B. 2014;2(37):6324–33.CrossRefGoogle Scholar
  44. 44.
    Ko YT, Bhattacharya R, Bickel U. Liposome encapsulated polyethylenimine/ODN polyplexes for brain targeting. J Control Release. 2009;133(3):230–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Rowinsky E, Donehower R, editors. The clinical pharmacology of paclitaxel (Taxol). Semin Oncol. 1993;20(4–3):16-25.Google Scholar
  46. 46.
    Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, et al. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl- O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 2008;29(9):1233–41.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of PharmacyGachon UniversityIncheonRepublic of Korea

Personalised recommendations