Pharmaceutical Research

, Volume 32, Issue 3, pp 863–875 | Cite as

Curcumin and Dimethoxycurcumin Induced Epigenetic Changes in Leukemia Cells

  • Hazem E. Hassan
  • Samuel Carlson
  • Inas Abdallah
  • Thomm Buttolph
  • Karen C. Glass
  • Tamer E. Fandy
Research Paper



Curcumin is an ideal chemopreventive and antitumor agent characterized by poor bioavailability and low stability. The development of synthetic structural analogues like dimethoxycurcumin (DMC) could overcome these drawbacks. In this study we compared the cytotoxicity, metabolism and the epigenetic changes induced by both drugs in leukemia cells.


Apoptosis and cell cycle analysis were analyzed by flow cytometry. Real-time PCR was used for gene expression analysis. DNA methylation was analyzed by DNA pyrosequencing. The metabolic stability was determined using human pooled liver microsomes. Chromatin Immunoprecipitation was used to quantify histone methylation.


Clinically relevant concentration of curcumin and DMC were not cytotoxic to leukemia cells and induced G2/M cell cycle arrest. DMC was more metabolically stable than curcumin. Curcumin and DMC were devoid of DNA hypomethylating activity. DMC induced the expression of promoter methylated genes without reversing DNA methylation and increased H3K36me3 mark near the promoter region of hypermethylated genes.


DMC is a more stable analogue of curcumin that can induce epigenetic changes not induced by curcumin. DMC induced the expression of promoter methylated genes. The combination of DMC with DNA methyltransferase inhibitors could harness their combined induced epigenetic changes for optimal re-expression of epigenetically silenced genes.


curcumin dimethoxycurcumin DNA methylation DNA pyrosequencing histone methylation 


5 AC



7-aminoactinomycin D

Annexin V-PE

Annexin V-phosphatidylethanolamine


Chromatin immunoprecipitation




DNA methyltransferase


Histone acetyltransferase


Histone deacetylase


Ten Eleven Translocation


Uridine 5′-diphosphoglucuronic acid


Acknowledgments & Disclosures

This work was supported by the Scholarship of Discovery Intramural Research Grant Program (SDIRGP) from Albany College of Pharmacy to TEF and University of Maryland intramural research grant to HH. The work was also supported by NIH Grant Numbers NIGMS R15GM104865 to KCG, 5 P30 RR032135 from the COBRE Program of the National Center for Research Resources and 8 P30 GM 103498 from the National Institute of General Medical Sciences. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIH.

Conflicts of Interest

The authors have no financial disclosures or conflicts of interest to declare.

Supplementary material

11095_2014_1502_MOESM1_ESM.docx (19 kb)
Table I (DOCX 18 kb)
11095_2014_1502_MOESM2_ESM.docx (768 kb)
Figure 1 (DOCX 768 kb)
11095_2014_1502_MOESM3_ESM.docx (163 kb)
Figure 2 (DOCX 162 kb)
11095_2014_1502_MOESM4_ESM.docx (110 kb)
Figure 3 (DOCX 109 kb)
11095_2014_1502_MOESM5_ESM.doc (534 kb)
Figure 4 (DOC 534 kb)
11095_2014_1502_MOESM6_ESM.doc (214 kb)
Figure 5 (DOC 214 kb)
11095_2014_1502_MOESM7_ESM.doc (268 kb)
Figure 6 (DOC 268 kb)
11095_2014_1502_MOESM8_ESM.doc (184 kb)
Figure 7 (DOC 184 kb)
11095_2014_1502_MOESM9_ESM.docx (36 kb)
Figure 8 (DOCX 35 kb)


  1. 1.
    Shankar S, Srivastava RK. Bax and Bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemopreventive agent derived from turmeric. Curcuma longa Carcinog. 2007;28(6):1277–86.CrossRefGoogle Scholar
  2. 2.
    Shehzad A, Rehman G, Lee YS. Curcumin in inflammatory diseases. Biofactors. 2013;39(1):69–77.CrossRefPubMedGoogle Scholar
  3. 3.
    Bukhari SN, Franzblau SG, Jantan I, Jasamai M. Current prospects of synthetic curcumin analogs and chalcone derivatives against mycobacterium tuberculosis. Med Chem. 2013;9(7):897–903.CrossRefPubMedGoogle Scholar
  4. 4.
    Ou JL, Mizushina Y, Wang SY, Chuang DY, Nadar M, Hsu WL. Structure-activity relationship analysis of curcumin analogues on anti-influenza virus activity. FEBS J. 2013;280(22):5829–40.CrossRefPubMedGoogle Scholar
  5. 5.
    Gazal M, Valente MR, Acosta BA, Kaufmann FN, Braganhol E, Lencina CL, et al. Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. Eur J Pharmacol. 2014;724:132–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Shankar S, Ganapathy S, Chen Q, Srivastava RK. Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol Cancer. 2008;7:16.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Srivastava RK, Chen Q, Siddiqui I, Sarva K, Shankar S. Linkage of curcumin-induced cell cycle arrest and apoptosis by cyclin-dependent kinase inhibitor p21(/WAF1/CIP1). Cell Cycle. 2007;6(23):2953–61.CrossRefPubMedGoogle Scholar
  8. 8.
    Shankar S, Chen Q, Sarva K, Siddiqui I, Srivastava RK. Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J Mol Signal. 2007;2:10.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Qiu P, Xu L, Gao L, Zhang M, Wang S, Tong S, et al. Exploring pyrimidine-substituted curcumin analogues: design, synthesis and effects on EGFR signaling. Bioorg Med Chem. 2013;21(17):5012–20.CrossRefPubMedGoogle Scholar
  10. 10.
    Chakraborti S, Dhar G, Dwivedi V, Das A, Poddar A, Chakraborti G, et al. Stable and potent analogues derived from the modification of the dicarbonyl moiety of curcumin. Biochemistry. 2013;52(42):7449–60.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen WF, Deng SL, Zhou B, Yang L, Liu ZL. Curcumin and its analogues as potent inhibitors of low density lipoprotein oxidation: H-atom abstraction from the phenolic groups and possible involvement of the 4-hydroxy-3-methoxyphenyl groups. Free Radic Biol Med. 2006;40(3):526–35.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu H, Liu YZ, Zhang F, Wang HS, Zhang G, Zhou BH, Zuo YL, Cai SH, Bu XZ, Du J. Identification of potential pathways involved in the induction of cell cycle arrest and apoptosis by a new 4-arylidene curcumin analogue T63 in lung cancer cells: a comparative proteomic analysis. Mol Biosyst. 2014.Google Scholar
  13. 13.
    Nagaraju GP, Zhu S, Wen J, Farris AB, Adsay VN, Diaz R, et al. Novel synthetic curcumin analogues EF31 and UBS109 are potent DNA hypomethylating agents in pancreatic cancer. Cancer Lett. 2013;341(2):195–203.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen C, Liu Y, Chen Y, Xu J. C086, a novel analog of curcumin, induces growth inhibition and down-regulation of NFkappaB in colon cancer cells and xenograft tumors. Cancer Biol Ther. 2011;12(9):797–807.CrossRefPubMedGoogle Scholar
  15. 15.
    Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G. Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol. 2007;101(6):427–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Sun M, Estrov Z, Ji Y, Coombes KR, Harris DH, Kurzrock R. Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther. 2008;7(3):464–73.CrossRefPubMedGoogle Scholar
  17. 17.
    Yu J, Peng Y, Wu LC, Xie Z, Deng Y, Hughes T, et al. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS One. 2013;8(2):e55934.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Du L, Xie Z, Wu LC, Chiu M, Lin J, Chan KK, et al. Reactivation of RASSF1A in breast cancer cells by curcumin. Nutr Cancer. 2012;64(8):1228–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Parashar G, Parashar NC, Capalash N. Curcumin causes promoter hypomethylation and increased expression of FANCF gene in SiHa cell line. Mol Cell Biochem. 2012;365(1–2):29–35.CrossRefPubMedGoogle Scholar
  20. 20.
    Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, et al. Epigenetic CpG demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPPS J. 2011;13(4):606–14.CrossRefGoogle Scholar
  21. 21.
    Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Liu Z, Xie Z, Jones W, Pavlovicz RE, Liu S, Yu J, et al. Curcumin is a potent DNA hypomethylation agent. Bioorg Med Chem Lett. 2009;19(3):706–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC, Boland CR, et al. Curcumin modulates DNA methylation in colorectal cancer cells. PLoS One. 2013;8(2):e57709.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Medina-Franco JL, Lopez-Vallejo F, Kuck D, Lyko F. Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers. 2011;15(2):293–304.CrossRefPubMedGoogle Scholar
  25. 25.
    Fandy TE, Jiemjit A, Thakar M, Rhoden P, Suarez L, Gore SD. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin Cancer Res. 2014;20(5):1249–58.CrossRefPubMedGoogle Scholar
  26. 26.
    Jiemjit A, Fandy TE, Carraway H, Bailey KA, Baylin S, Herman JG, et al. p21(WAF1/CIP1) induction by 5-azacytosine nucleosides requires DNA damage. Oncogene. 2008;27(25):3615–23.CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Tost J, Gut IG. DNA methylation analysis by pyrosequencing. Nat Protoc. 2007;2(9):2265–75.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res. 2004;32(3):e38.CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Moiseeva EP, Almeida GM, Jones GD, Manson MM. Extended treatment with physiologic concentrations of dietary phytochemicals results in altered gene expression, reduced growth, and apoptosis of cancer cells. Mol Cancer Ther. 2007;6(11):3071–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu HS, Ke CS, Cheng HC, Huang CY, Su CL. Curcumin-induced mitotic spindle defect and cell cycle arrest in human bladder cancer cells occurs partly through inhibition of aurora A. Mol Pharmacol. 2011;80(4):638–46.CrossRefPubMedGoogle Scholar
  31. 31.
    Fandy TE. Development of DNA methyltransferase inhibitors for the treatment of neoplastic diseases. Curr Med Chem. 2009;16(17):2075–85.CrossRefPubMedGoogle Scholar
  32. 32.
    Fandy TE, Herman JG, Kerns P, Jiemjit A, Sugar EA, Choi SH, et al. Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies. Blood. 2009;114(13):2764–73.CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Migheli F, Stoccoro A, Coppede F, Wan Omar WA, Failli A, Consolini R, et al. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLoS One. 2013;8(1):e52501.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Easwaran HP, Schermelleh L, Leonhardt H, Cardoso MC. Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep. 2004;5(12):1181–6.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, et al. Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res. 2005;65(14):6305–11.CrossRefPubMedGoogle Scholar
  36. 36.
    Sarris M, Nikolaou K, Talianidis I. Context-specific regulation of cancer epigenomes by histone and transcription factor methylation. Oncogene. 2014;33(10):1207–17.CrossRefPubMedGoogle Scholar
  37. 37.
    Tamvakopoulos C, Dimas K, Sofianos ZD, Hatziantoniou S, Han Z, Liu ZL, et al. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin Cancer Res. 2007;13(4):1269–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Mach CM, Chen JH, Mosley SA, Kurzrock R, Smith JA. Evaluation of liposomal curcumin cytochrome p450 metabolism. Anticancer Res. 2010;30(3):811–4.PubMedGoogle Scholar
  39. 39.
    Liu Z, Liu S, Xie Z, Blum W, Perrotti D, Paschka P, et al. Characterization of in vitro and in vivo hypomethylating effects of decitabine in acute myeloid leukemia by a rapid, specific and sensitive LC-MS/MS method. Nucleic Acids Res. 2007;35(5):e31.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Mohr F, Dohner K, Buske C, Rawat VP. TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol. 2011;39(3):272–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM, et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000;60(24):6890–4.PubMedGoogle Scholar
  42. 42.
    Pruitt K, Zinn RL, Ohm JE, McGarvey KM, Kang SH, Watkins DN, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006;2(3):e40.CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Raynal NJ, Si J, Taby RF, Gharibyan V, Ahmed S, Jelinek J, et al. DNA methylation does not stably lock gene expression but instead serves as a molecular mark for gene silencing memory. Cancer Res. 2012;72(5):1170–81.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hazem E. Hassan
    • 1
  • Samuel Carlson
    • 2
  • Inas Abdallah
    • 1
  • Thomm Buttolph
    • 3
  • Karen C. Glass
    • 2
  • Tamer E. Fandy
    • 2
  1. 1.Department of Pharmaceutical SciencesUniversity of MarylandBaltimoreUSA
  2. 2.Department of Pharmaceutical SciencesAlbany College of Pharmacy (Vermont Campus)ColchesterUSA
  3. 3.Department of Neurological SciencesUniversity of VermontBurlingtonUSA

Personalised recommendations