Skip to main content

Advertisement

Log in

Pharmacokinetics, Antitumor and Cardioprotective Effects of Liposome-Encapsulated Phenylaminoethyl Selenide in Human Prostate Cancer Rodent Models

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Cardiotoxicity associated with the use of doxorubicin (DOX), and other chemotherapeutics, limits their clinical potential. This study determined the pharmacokinetics and antitumor and cardioprotective activity of free and liposome encapsulated phenyl-2-aminoethyl-selenide (PAESe).

Methods

The pharmacokinetics of free PAESe and PAESe encapsulated in liposomes (SSL-PAESe) were determined in rats using liquid chromatography tandem mass-spectrometry. The antitumor and cardioprotective effects were determined in a mouse xenograft model of human prostate (PC-3) cancer and cardiomyocytes (H9C2).

Results

The encapsulation of PAESe in liposomes increased the circulation half-life and area under the drug concentration time profile, and decreased total systemic clearance significantly compared to free PAESe. Free- and SSL-PAESe improved survival, decreased weight-loss and prevented cardiac hypertrophy significantly in tumor bearing and healthy mice following treatment with DOX at 5 and 12.5 mg/kg. In vitro studies revealed PAESe treatment altered formation of reactive oxygen species (ROS), cardiac hypertrophy and gene expression, i.e., atrial natriuretic peptide and myosin heavy chain complex beta, in H9C2 cells.

Conclusions

Treatment with free and SSL-PAESe exhibited antitumor activity in a prostate xenograft model and mitigated DOX-mediated cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

ANP:

Atrial natriuretic peptide

AUC:

Area under the plasma drug concentration-time curve

Chol:

Cholesterol

CL:

Total systemic clearance

Cmax :

Maximum plasma concentration

CV:

Coefficient of variation

DOX:

Doxorubicin

DSPC:

1,2-distearoyl-sn-glycero-3-phosphatidylcholine

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

ESI:

Electrospray ionization

FPAESe:

4-fluoro-phenyl-2-aminoethyl selenide

H2DCFDA:

2′-7′- dichlorodihydrofluorescein diacetate

I.S.:

Internal standard

k:

Terminal elimination rate

LC:

High performance liquid chromatography

Lip-PAESe:

SSL-PAESe

LLOQ:

Lower limit of quantification

m/z:

Mass to charge

MeOH:

Methanol

MHC-β:

Myosin heavy chain complex beta

MRM:

Multiple reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PAESe:

Phenyl-2-aminoethyl selenide

PK:

Pharmacokinetic

QC:

Quality control

qPCR:

Quantitative polymerase chain reaction

ROS:

Reactive oxygen species

sc:

Subcutaneous

SSL:

Sterically-stabilized liposomes

SSL-PAESe:

Sterically stabilized PAESe liposomes

t1/2 :

Half-life

V:

Apparent volume of distribution

αt1/2 :

Alpha distribution half-life

βt1/2 :

Beta elimination half-life

References

  1. Hande f. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim et Biophys Acta (BBA) Gene Struct Expr. 1998;1400(1‚Äì3):173–84.

    Article  CAS  Google Scholar 

  2. Quiles JL, Huertas JR, Battino M, Mataix J, Ramirez-Tortosa MC. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002;180:79–95.

    Article  CAS  PubMed  Google Scholar 

  3. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185–229.

    Article  CAS  PubMed  Google Scholar 

  4. Herman EH, Zhang J, Chadwick DP, Ferrans VJ. Comparison of the protective effects of amifostine and dexrazoxane against the toxicity of doxorubicin in spontaneously hypertensive rats. Cancer Chemother Pharmacol. 2000;45(4):329–34.

    Article  CAS  PubMed  Google Scholar 

  5. Pearlman M, Jendiroba D, Pagliaro L, Keyhani A, Liu B, Freireich EJ. Dexrazoxane in combination with anthracyclines lead to a synergistic cytotoxic response in acute myelogenous leukemia cell lines. Leuk Res. 2003;27(7):617–26.

    Article  CAS  PubMed  Google Scholar 

  6. Spencer CM, Goa KL. Amifostine. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential as a radioprotector and cytotoxic chemoprotector. Drugs. 1995;50(6):1001–31.

    Article  CAS  PubMed  Google Scholar 

  7. Treskes M, van der Vijgh WJ. WR2721 as a modulator of cisplatin- and carboplatin-induced side effects in comparison with other chemoprotective agents: a molecular approach. Cancer Chemother Pharmacol. 1993;33(2):93–106.

    Article  CAS  PubMed  Google Scholar 

  8. May SW. Selenium-based drug design: rationale and therapeutic potential. Expert Opin Investig Drugs. 1999;8(7):1017–30.

    Article  CAS  PubMed  Google Scholar 

  9. May SW. Selenium-based pharmacological agents: an update. Expert Opin Investig Drugs. 2002;11(9):1261–9.

    Article  CAS  PubMed  Google Scholar 

  10. May SW, Pollock SH. Selenium-based antihypertensives: rationale and potential. Drugs. 1998;56:959–64.

    Article  CAS  PubMed  Google Scholar 

  11. May SW, Wang L, Gill-Woznichak MM, Browner RF, Ogonowski AA, Smith JB, et al. An orally active selenium-based antihypertensive agent with restricted CNS permeability. J Pharmacol Exp Ther. 1997;283(2):470–7.

    CAS  PubMed  Google Scholar 

  12. Kang JY, Costyn LJ, Nagy T, Cowan EA, Oldham CD, May SW, et al. The antioxidant phenylaminoethyl selenide reduces doxorubicin-induced cardiotoxicity in a xenograft model of human prostate cancer. Arch Biochem Biophys. 2011;515:112–9.

    Article  CAS  PubMed  Google Scholar 

  13. Arnold RD, Mager DE, Slack JE, Straubinger RM. Effect of repetitive administration of Doxorubicin-containing liposomes on plasma pharmacokinetics and drug biodistribution in a rat brain tumor model. Clin Cancer Res. 2005;11(24 Pt 1):8856–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurg. 1995;83(6):1029–37.

    Article  CAS  PubMed  Google Scholar 

  15. Gabizon A, Shiota R, Papahadjopoulos D. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst. 1989;81(19):1484–8.

    Article  CAS  PubMed  Google Scholar 

  16. Sharma US, Sharma A, Chau RI, Straubinger RM. Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm Res. 1997;14(8):992–8.

    Article  CAS  PubMed  Google Scholar 

  17. Arnold RD, Slack JE, Straubinger RM. Quantification of Doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B. 2004;808(2):141–52.

    Article  CAS  Google Scholar 

  18. Zhu G, Alhamhoom Y, Cummings BS, Arnold RD. Synthesis of lipids for development of multifunctional lipid-based drug-carriers. Bioorg Med Chem Lett. 2011;21:6370–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhu G, Mock JN, Aljuffali I, Cummings BS, Arnold RD. Secretory phospholipase A2 responsive liposomes. J Pharm Sci. 2011;100(8):3146–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Bartlett GR. Phosphorous assay in column chromatography. J Biol Chem. 1959;234:466–8.

    CAS  PubMed  Google Scholar 

  21. Gabrielsson J, Weiner D. Pharmacokinetic Pharmacodynamic Data Analysis: Concepts and Applications. 4th ed. Sweden: Swedish Pharmaceutical Press. 2007:438–63.

  22. Davol PA, Frackelton AR. Targeting human prostatic carcinoma through basic fibroblast growth factor receptors in an animal model: characterizing and circumventing mechanisms of tumor resistance. Prostate. 1999;40(3):178–91.

    Article  CAS  PubMed  Google Scholar 

  23. Wong HL, Rauth AM, Bendayan R, Wu XY. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. 2007;65(3):300–8.

    Article  CAS  Google Scholar 

  24. Nanayakkara G, Viswaprakash N, Zhong J, Kariharan T, Quindry J, Amin R. PPARgamma activation improves the molecular and functional components of I(to) remodeling by angiotensin II. Curr Pharm Des. 2013;19(27):4839–47.

    Article  CAS  PubMed  Google Scholar 

  25. Karagiannis TC, Lin A, Ververis K, Chang L, Tang MM, Okabe J, et al. Trichostatin A accentuates doxorubicin-induced hypertrophy in cardiac myocytes. Aging (Albany NY). 2010;2(10):659–68.

    CAS  Google Scholar 

  26. MacKichan JJ. Influence of protein binding and use of unbound (free) drug concentrations. Applied Pharmacokinetics. Vancouver, Washington: Applied Therapeutics; 1992. p. 1–48.

  27. McNamara PJ, Levy G, Gibaldi M. Effect of plasma protein and tissue binding on the time course of drug concentration in plasma. J Pharmacokinet Biopharm. 1979;7(2):195–206.

    Article  CAS  PubMed  Google Scholar 

  28. Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. 1999;341(17):1276–83.

    Article  CAS  PubMed  Google Scholar 

  29. Sardao VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol. 2009;25(3):227–43.

    Article  CAS  PubMed  Google Scholar 

  30. Straubinger RM, Arnold RD, Zhou R, Mazurchuk R, Slack JE. Antivascular and antitumor activities of liposome-associated drugs. Anticancer Res. 2004;24(2A):397–404.

    CAS  PubMed  Google Scholar 

  31. Ursini F, Bindoli A. The role of selenium peroxidases in the protection against oxidative damage of membranes. Chem Phys Lipids. 1987;44(2–4):255–76.

    Article  CAS  PubMed  Google Scholar 

  32. Gladyshev VN, Jeang KT, Stadtman TC. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci U S A. 1996;93(12):6146–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Sundstrom H, Korpela H, Viinikka L, Kauppila A. Serum selenium and glutathione peroxidase, and plasma lipid peroxides in uterine, ovarian or vulvar cancer, and their responses to antioxidants in patients with ovarian cancer. Cancer Lett. 1984;24(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang C, Jiang W, Ip C, Ganther H, Lu J. Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake. Mol Carcinog. 1999;26(4):213–25.

    Article  CAS  PubMed  Google Scholar 

  35. Hermansen K, Wassermann K. The effect of vitamin E and selenium on doxorubicin (Adriamycin) induced delayed toxicity in mice. Acta Pharmacol Toxicol. 1986;58(1):31–7.

    Article  CAS  Google Scholar 

  36. May SW, Herman HH, Roberts SF, Ciccarello MC. Ascorbate depletion as a consequence of product recycling during dopamine.beta.-monooxygenase catalyzed selenoxidation. Biochemistry. 1987;26(6):1626–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Disclosures

This research was funded in part by NIH 1R01 1EB016100-01 and 1R21 EB008153 (RDA), Auburn University Internal Grants Program, Georgia Cancer Coalition Distinguished Scholar Grant (RDA) and University of Georgia-Georgia Tech Seed Grant (SWM/RDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Arnold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental data

(DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.Y., Eggert, M., Mouli, S. et al. Pharmacokinetics, Antitumor and Cardioprotective Effects of Liposome-Encapsulated Phenylaminoethyl Selenide in Human Prostate Cancer Rodent Models. Pharm Res 32, 852–862 (2015). https://doi.org/10.1007/s11095-014-1501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1501-5

KEY WORDS

Navigation