Pharmaceutical Research

, Volume 32, Issue 2, pp 389–402 | Cite as

Enhanced Oral Delivery of Curcumin from N-trimethyl Chitosan Surface-Modified Solid Lipid Nanoparticles: Pharmacokinetic and Brain Distribution Evaluations

Research Paper



Solid lipid nanoparticles (SLNs) have been proposed as a colloidal carrier system that could enhance the oral bioavailability of curcumin. However, a burst release of the loaded drug, which occurs in acidic environments, has been a main obstacle to the oral delivery of curcumin by using SLNs as a carrier system. We hypothesized that a quarternized chitosan derivative could be used for acid-resistant coating to stabilize the SLNs and circumvent the burst release.


N-trimethyl chitosan (TMC) was synthesized and determined by 1H-NMR and FT-IR. To investigate the details of chitosan and TMC surface modification on SLCNs composed of palmitic acid, cholesterol, TPGS and curcumin, a number of factors such as optimized SLNs composition, solid state characterization, stability, cell viability, in vitro release in GI conditions, curcumin oral bioavailability and brain distribution studies, were evaluated.


The TMC-SLCNs exhibited prolonged stability in room and refrigerated conditions, controlled drug release in simulated intestinal fluid, significantly higher oral bioavailability, and brain distribution of curcumin than free curcumin, chitosan and non-coated SLCNs.


These finding suggests that the TMC-SLCNs is a promising nanocarrier system for oral delivery and brain distribution of curcumin.

Key words

coating curcumin N-trimethyl chitosan oral drug delivery solid lipid nanoparticles 



Chitosan coated solid lipid nanoparticles


Differential scanning calorimetry


Fourier transform-infrared spectroscopy


Proton nuclear magnetic resonance spectroscopy


High performance liquid chromatography


Liquid chromatography – tandem mass spectroscopy

MTT reagent

(3-[4, 5-dimethyl –thiazol-2-yl]-2, 5-diphenyl tetrazolium bromide)


Powder X-ray diffraction


Curcumin-loaded solid lipid nanoparticles


Solid lipid nanoparticles


Thermogravimetric analysis


N-trimethyl chitosan


N-trimethyl chitosan coated solid lipid nanoparticles


d-α-tocopheryl polyethylene glycol 1,000 succinate



This research was supported by the Basic Science Research Program of Korean National Research Foundation (NRF-20110007794).


  1. 1.
    Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci. 2006;78(18):2081–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, et al. Curcumin polymers as anticancer conjugates. Biomaterials. 2010;31(27):7139–49.PubMedCrossRefGoogle Scholar
  3. 3.
    Mondal G, Barui S, Saha S, Chaudhuri A. Tumor growth inhibition through targeting liposomally bound curcumin to tumor vasculature. J Control Release. 2013;172(3):832–40.PubMedCrossRefGoogle Scholar
  4. 4.
    Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surf B: Biointerfaces. 2013;111:367–75.PubMedCrossRefGoogle Scholar
  5. 5.
    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101.CrossRefGoogle Scholar
  6. 6.
    Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–77.PubMedCrossRefGoogle Scholar
  7. 7.
    Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Venishetty VK, Chede R, Komuravelli R, Adepu L, Sistla R, Diwan PV. Design and evaluation of polymer coated carvedilol loaded solid lipid nanoparticles to improve the oral bioavailability: a novel strategy to avoid intraduodenal administration. Colloids Surf B: Biointerfaces. 2012;95:1–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Madan J, Pandey RS, Jain V, Katare OP, Chandra R, Katyal A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomedicine Nanotechnol Biol Med. 2013;9(4):492–503.CrossRefGoogle Scholar
  10. 10.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release. 2006;111(1–2):107–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52(2):117–26.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen F, Zhang Z-R, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int J Pharm. 2008;349(1–2):226–33.PubMedCrossRefGoogle Scholar
  14. 14.
    Subbiah R, Ramalingam P, Ramasundaram S, Kim DY, Park K, Ramasamy MK, et al. N, N, N-Trimethyl chitosan nanoparticles for controlled intranasal delivery of HBV surface antigen. Carbohydr Polym. 2012;89(4):1289–97.PubMedCrossRefGoogle Scholar
  15. 15.
    Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T. Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm. 2007;342(1):240–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Sandri G, Rossi S, Bonferoni MC, Ferrari F, Zambito Y, Colo GD, et al. Buccal penetration enhancement properties of <i> N</i> -trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm. 2005;297(1):146–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Di Colo G, Burgalassi S, Zambito Y, Monti D, Chetoni P. Effects of different N‐trimethyl chitosans on in vitro/in vivo ofloxacin transcorneal permeation. J Pharm Sci. 2004;93(11):2851–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Florea BI, Thanou M, Junginger HE, Borchard G. Enhancement of bronchial octreotide absorption by chitosan and <i> N</i> -trimethyl chitosan shows linear in vitro/in vivo correlation. J Control Release. 2006;110(2):353–61.PubMedCrossRefGoogle Scholar
  19. 19.
    He W, Du Y, Dai W, Wu Y, Zhang M. Effects of N‐trimethyl chitosan chloride as an absorption enhancer on properties of insulin liquid suppository in vitro and in vivo. J Appl Polym Sci. 2006;99(3):1140–6.CrossRefGoogle Scholar
  20. 20.
    Sayın B, Somavarapu S, Li XW, Sesardic D, Şenel S, Alpar OH. TMC–MCC (N-trimethyl chitosan–mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci. 2009;38(4):362–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Yin L, Ding J, He C, Cui L, Tang C, Yin C. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials. 2009;30(29):5691–700.PubMedCrossRefGoogle Scholar
  22. 22.
    Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, et al. Preparation and evaluation of nanoparticles made of chitosan or <i> N</i> -trimethyl chitosan and a cisplatin–alginate complex. J Control Release. 2007;121(1):110–23.PubMedCrossRefGoogle Scholar
  23. 23.
    Germershaus O, Mao S, Sitterberg J, Bakowsky U, Kissel T. Gene delivery using chitosan, trimethyl chitosan or polyethylenglycol-graft-trimethyl chitosan block copolymers: establishment of structure–activity relationships in vitro. J Control Release. 2008;125(2):145–54.PubMedCrossRefGoogle Scholar
  24. 24.
    Chen H, Wu J, Sun M, Guo C, Yu A, Cao F, et al. N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. J Liposome Res. 2012;22(2):100–9.PubMedGoogle Scholar
  25. 25.
    Slütter B, Soema PC, Ding Z, Verheul R, Hennink W, Jiskoot W. Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J Control Release. 2010;143(2):207–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Z, Tan S, Feng S-S. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33(19):4889–906.PubMedCrossRefGoogle Scholar
  27. 27.
    Ramasamy TG, Haidar ZS. Formulation, characterization and cytocompatibility evaluation of novel coreshell solid lipid nanoparticles for the controlled and tunable delivery of a model protein. J Bionanoscience. 2011;5(2):143–54.CrossRefGoogle Scholar
  28. 28.
    Zanotto-Filho A, Coradini K, Braganhol E, Schröder R, de Oliveira CM, Simões-Pires A, et al. Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment. Eur J Pharm Biopharm. 2013;83(2):156–67.PubMedCrossRefGoogle Scholar
  29. 29.
    Mangolim CS, Moriwaki C, Nogueira AC, Sato F, Baesso ML, Neto AM, et al. Curcumin–β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014;153:361–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang J, Tang Q, Xu X, Li N. Development and evaluation of a novel phytosome-loaded chitosan microsphere system for curcumin delivery. Int J Pharm. 2013;448(1):168–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 2011;55(3):495–503.PubMedCrossRefGoogle Scholar
  32. 32.
    Wohlfart S, Khalansky AS, Gelperina S, Begley D, Kreuter J. Kinetics of transport of doxorubicin bound to nanoparticles across the blood–brain barrier. J Control Release. 2011;154(1):103–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2001;47(2–3):165–96.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen C-C, Tsai T-H, Huang Z-R, Fang J-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–82.PubMedCrossRefGoogle Scholar
  35. 35.
    Subedi RK, Kang KW, Choi H-K. Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci. 2009;37(3–4):508–13.PubMedCrossRefGoogle Scholar
  36. 36.
    de Carvalho SM, Noronha CM, Floriani CL, Lino RC, Rocha G, Bellettini IC, et al. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind Crop Prod. 2013;49:278–85.CrossRefGoogle Scholar
  37. 37.
    Pawar YB, Shete G, Popat D, Bansal AK. Phase behavior and oral bioavailability of amorphous Curcumin. Eur J Pharm Sci. 2012;47(1):56–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1–2):190–203.PubMedCrossRefGoogle Scholar
  39. 39.
    van der Merwe SM, Verhoef JC, Verheijden JHM, Kotzé AF, Junginger HE. Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm. 2004;58(2):225–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Porter CJH, Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev. 2001;50(1–2):61–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials. 2010;31(5):908–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of PharmacyGachon UniversityIncheonSouth Korea

Personalised recommendations