Skip to main content

Advertisement

Log in

Opening Up the Optical Imaging Window Using Nano-Luciferin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to formulate nanoparticles of D-luciferin (Nano-Luc), DiR (Nano-DiR) and dual functional nanoparticles with DiR and luciferin (Nano-LucDiR) for in-vivo imaging as well as tracking of the nanoparticles in tumors.

Methods

Nano-Luc and Nano-LucDiR were prepared using different lipids, and subsequently characterized for loading and entrapment efficiency, physical properties, release profile, toxicity and stability. We utilized Response Surface Methodology (RSM) to optimize the nanoparticles using design of experiment (DOE Vr.8.0). Nano-Luc was evaluated against free luciferin to establish its pharmacokinetic parameters in mice. In-vivo imaging of tumors and tracking of nanoparticles was carried out with an IVIS® Spectrum-CT (Caliper) using xenograft, orthotopic and metastatic tumor models in BALB/c nude mice with different cell lines and different routes of nanoparticle administration (subcutaneous, intraperitoneal and intravenous).

Results

Particle size of both Nano-Luc and Nano-LucDiR were found to be <200 nm. Nano-Luc formulation showed a slow and controlled release upto 72 h (90%) in vitro. The optimized Nano-Luc had loading efficiency of 5.0 mg/ml with 99% encapsulation efficiency. Nano-Luc and Nano-LucDiR formulations had good shelf stability. Nano-Luc and Nano-LucDiR enhanced plasma half-life of luciferin compared to free luciferin thus providing longer circulation of luciferin in plasma enabling imaging of tumors for more than 24 h. Nano-LucDiR allowed simultaneous bioluminescent and fluorescent imaging to be conducted, with three-dimensional reconstruct of tumors without losing either signal during the acquisition time.

Conclusion

Nano-Luc and Nano-LucDiR allowed prolonged reproducible in-vivo imaging of tumors, especially during multimodality 3D imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCD:

Central Composite Design

CT:

Computed Tomography

DOE:

Design Of Experiment

DSC:

Differential Scanning Calorimetry

FOV:

Field Of View

IP:

Intraperitoneal

IV:

Intravenous

Nano-DiR:

Nanoparticles of DiR

Nano-Luc:

Nanoparticles of D-Luciferin

Nano-LucDiR:

Nanoparticles with DiR and Luciferin

NCs:

Nano lipid carriers

QbB:

Quality by Design

ROI:

Region of Interest

RSM:

Response Surface Methodology

SD:

Standard Deviations

SQ/SC:

Subcutaneous

TPGS:

α-Tocopherol Polyethylene Glycol Succinate

Xenolight DiR:

DiIC18(7) or 1,1′-dioctadecyltetramethyl indotricarbocyanine iodide

REFERENCES

  1. Di Carli MF, Dorbala S, Meserve J, El Fakhri G, Sitek A, Moore SC. Clinical myocardial perfusion PET/CT. J Nucl Med. 2007;48(5):783–93.

    Article  PubMed  Google Scholar 

  2. Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49(3):390–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao B, Schwartz LH, Larson SM. Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers. J Nucl Med. 2009;50(2):239–49.

    Article  PubMed  Google Scholar 

  4. Hillner BE, Liu D, Coleman RE, Shields AF, Gareen IF, Hanna L, et al. The National Oncologic PET Registry (NOPR): design and analysis plan. J Nucl Med. 2007;48(11):1901–8.

    Article  PubMed  Google Scholar 

  5. Hargreaves RJ. The role of molecular imaging in drug discovery and development. Clin Pharmacol Ther. 2008;83(2):349–53.

    Article  PubMed  CAS  Google Scholar 

  6. Niu G, Chen X. Has molecular and cellular imaging enhanced drug discovery and drug development? Drugs R D. 2008;9(6):351–68.

    Article  PubMed  CAS  Google Scholar 

  7. Cho H, Ackerstaff E, Carlin S, Lupu ME, Wang Y, Rizwan A, et al. Noninvasive multimodality imaging of the tumor microenvironment: registered dynamic magnetic resonance imaging and positron emission tomography studies of a preclinical tumor model of tumor hypoxia. Neoplasia. 2009;11(3):247–59. 2p following 59.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Contag CH, Ross BD. It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J Magn Reson Imaging. 2002;16(4):378–87.

    Article  PubMed  Google Scholar 

  9. Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med. 2008;49 Suppl 2:113S–28.

    Article  PubMed  CAS  Google Scholar 

  10. Lim E, Modi K, Christensen A, Meganck J, Oldfield S, Zhang N. Monitoring tumor metastases and osteolytic lesions with bioluminescence and micro CT imaging. J Vis Exp. 2011(50):2775.

  11. Gross S, Piwnica-Worms D. Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell. 2005;7(1):5–15.

    PubMed  CAS  Google Scholar 

  12. Corn DJ, Kim Y, Krebs MD, Mounts T, Molter J, Gerson S, et al. Imaging Early Stage Osteogenic Differentiation of Mesenchymal Stem Cells. J Orthop Res. 2013;31(6):871–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chan CT, Paulmurugan R, Reeves RE, Solow-Cordero D, Gambhir SS. Molecular imaging of phosphorylation events for drug development. Mol Imaging Biol. 2009;11(3):144–58.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov. 2008;7(7):591–607.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi D, Tkacz JN, Hammond S, Devenney-Cakir BC, Zaim S, Bouzegaou N, et al. Gastroenteropancreatic neuroendocrine tumors: multimodality imaging features with pathological correlation. Jpn J Radiol. 2011;29(2):85–91.

    Article  PubMed  Google Scholar 

  16. Zinn KR, Chaudhuri TR, Szafran AA, O’Quinn D, Weaver C, Dugger K, et al. Noninvasive bioluminescence imaging in small animals. ILAR J. 2008;49(1):103–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sadikot RT, Blackwell TS. Bioluminescence imaging. Proc Am Thorac Soc. 2005;2(6):537–40. 11–2.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Badr CE, Tannous BA. Bioluminescence imaging: progress and applications. Trends Biotechnol. 2011;29(12):624–33.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang N, Lyons S, Lim E, Lassota P. A spontaneous acinar cell carcinoma model for monitoring progression of pancreatic lesions and response to treatment through noninvasive bioluminescence imaging. Clin Cancer Res. 2009;15(15):4915–24.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang W, Feng JQ, Harris SE, Contag PR, Stevenson DK, Contag CH. Rapid in vivo functional analysis of transgenes in mice using whole body imaging of luciferase expression. Transgenic Res. 2001;10(5):423–34.

    Article  PubMed  CAS  Google Scholar 

  21. Lim E, Modi KD, Kim J. In vivo bioluminescent imaging of mammary tumors using IVIS spectrum. J Vis Exp. 2009(26):1210.

  22. Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A. 2002;99(1):377–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Frackman S, Anhalt M, Nealson KH. Cloning, organization, and expression of the bioluminescence genes of Xenorhabdus luminescens. J Bacteriol. 1990;172(10):5767–73.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Siragusa GR, Nawotka K, Spilman SD, Contag PR, Contag CH. Real-time monitoring of Escherichia coli O157:H7 adherence to beef carcass surface tissues with a bioluminescent reporter. Appl Environ Microbiol. 1999;65(4):1738–45.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhao H, Doyle TC, Coquoz O, Kalish F, Rice BW, Contag CH. Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt. 2005;10(4):41210.

    Article  PubMed  Google Scholar 

  26. Gross S, Abraham U, Prior JL, Herzog ED, Piwnica-Worms D. Continuous delivery of D-luciferin by implanted micro-osmotic pumps enables true real-time bioluminescence imaging of luciferase activity in vivo. Mol Imaging. 2007;6(2):121–30.

    PubMed  CAS  Google Scholar 

  27. Hiler DJ, Greenwald ML, Geusz ME. Imaging gene expression in live transgenic mice after providing luciferin in drinking water. Photochem Photobiol Sci. 2006;5(11):1082–5.

    Article  PubMed  CAS  Google Scholar 

  28. Berger F, Paulmurugan R, Bhaumik S, Gambhir SS. Uptake kinetics and biodistribution of 14C-D-luciferin–a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction: impact on bioluminescence based reporter gene imaging. Eur J Nucl Med Mol Imaging. 2008;35(12):2275–85.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gross S, Piwnica-Worms D. Real-time imaging of ligand-induced IKK activation in intact cells and in living mice. Nat Methods. 2005;2(8):607–14.

    Article  PubMed  CAS  Google Scholar 

  30. Kheirolomoom A, Kruse DE, Qin S, Watson KE, Lai CY, Young LJ, et al. Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system. J Control Release. 2010;141(2):128–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Souto EB, Wissing SA, Barbosa CM, Muller RH. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm. 2004;278(1):71–7.

    Article  PubMed  CAS  Google Scholar 

  32. Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm. 2013;85(3 Pt A):339–45.

    Article  PubMed  CAS  Google Scholar 

  33. Muller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1–2):121–8.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang GJ, Chen TB, Davide J, Tao W, Vanko A, Connolly B, et al. Visualization of Mitotic Arrest of Cell Cycle with Bioluminescence Imaging in Living Animals. Mol Imaging Biol. 2013 Feb 26.

  35. Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.

    Article  PubMed  CAS  Google Scholar 

  36. Singh B, Bhatowa R, Tripathi CB, Kapil R. Developing micro-/nanoparticulate drug delivery systems using “design of experiments”. Int J Pharm Investig. 2011;1(2):75–87.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Xiang QY, Wang MT, Chen F, Gong T, Jian YL, Zhang ZR, et al. Lung-targeting delivery of dexamethasone acetate loaded solid lipid nanoparticles. Arch Pharm Res. 2007;30(4):519–25.

    Article  PubMed  CAS  Google Scholar 

  38. Singh A, Ahmad I, Akhter S, Jain GK, Iqbal Z, Talegaonkar S, et al. Nanocarrier based formulation of Thymoquinone improves oral delivery: Stability assessment, in vitro and in vivo studies. Colloids Surf B: Biointerfaces. 2013;102:822–32.

    Article  PubMed  CAS  Google Scholar 

  39. Hao J, Wang F, Wang X, Zhang D, Bi Y, Gao Y, et al. Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. Eur J Pharm Sci. 2012;47(2):497–505.

    Article  PubMed  CAS  Google Scholar 

  40. Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PN, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release. 2010;144(2):233–41.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Schwarz C, Mehnert W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int J Pharm. 1997;157(2):171–9.

    Article  PubMed  CAS  Google Scholar 

  42. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.

    Article  PubMed  CAS  Google Scholar 

  43. Puglia C, Blasi P, Rizza L, Schoubben A, Bonina F, Rossi C, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm. 2008;357(1–2):295–304.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was financially supported by National Institute of Health - MBRS-SC1 Program (Grant # SC1 GM092779-01). The authors report no financial interest that might pose a potential, perceived, or real conflict of interest. U.S. Patent filed “Modified Nanodelivery System and Method for Enhanced In vivo Medical and Preclinical Imaging.” (U.S. 13/851610).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mandip Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Affect of Lipid and Oil type on loading efficiency (A), entrapment efficiency (B), 24 h release rate (C) and mean particle size (D) in the RSM. (GIF 291 kb)

High resolution image (TIFF 34 kb)

Figure S2

Response surface plots (A) and countor plots (B) showing the effect of different concentration of lipid and oil on release rate, loading efficiency and entrapment efficiency of Nano-Luc. (GIF 529 kb)

High resolution image (TIFF 338 kb)

Figure S3

Differential Scanning Calorimetry of Nano-Luc formulations. A) Luciferin, B) Geleol, C) Nano-Luc, D) Precirol, E) Nano-LucDiR and F) Miglyol. (GIF 275 kb)

High resolution image (TIFF 35 kb)

Figure S4

A) A graph of Log (% luciferin recovery) vs time for the effect of temperature (30°C, 40°C and 50°C) on Nano-Luc stability. B) In-vitro Comparison of Nano-luciferin and luciferin at 150 μg/mL with background subtraction (Plot of total flux Vs cell number). (n = 3) (GIF 228 kb)

High resolution image (TIFF 61 kb)

Figure S5

Nano-luc Tumor Imaging in mice with A) subcutaneous 4 T1-luc2 tumors and B) orthotopic 4 T1-luc2 tumors using 150 mg/kg luciferin equivalent Nano-Luc by IP. (GIF 232 kb)

High resolution image (TIFF 238 kb)

ESM 1

(DOCX 53 kb)

ESM 2

(DOCX 183 kb)

ESM 3

(DOCX 86 kb)

ESM 4

(DOCX 53 kb)

ESM 5

(AVI 6358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A.R., Lim, E., Francis, K.P. et al. Opening Up the Optical Imaging Window Using Nano-Luciferin. Pharm Res 31, 3073–3084 (2014). https://doi.org/10.1007/s11095-014-1400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1400-9

KEY WORDS

Navigation