Skip to main content

Advertisement

Log in

Development of Liposomal Nanoconstructs Targeting P-selectin (CD62P)-expressing Cells by Using A Sulfated Derivative of Sialic Acid

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

NMSO3, a sulfated derivative of sialic acid, is a specific inhibitor for P-selectin (CD62P)-mediated cell adhesion. We attempted to apply liposomes modified with NMSO3 for selective targeting of activated platelets.

Methods

The binding of fluorescently labeled NMSO3-containing liposomes (NMSO3-liposomes) to CHO cells expressing P-selectin (CHO-P cells) and activated platelets were examined. The distribution of NMSO3-liposomes incorporated into the cells was observed by fluorescence microscopy.

Results

The binding assay revealed that NMSO3-liposomes specifically bound to immobilized P-selectin and CHO-P cells in a dose-dependent manner. The binding of NMSO3-liposomes to CHO-P cells was much stronger than that to the parental CHO-K1 cells. Fluorescence microscopic observation showed that NMSO3-liposomes were incorporated into CHO-P cells after the binding and distributed throughout the cytoplasm of the cell. NMSO3-liposomes bound more strongly to thrombin-activated platelets than to resting platelets, as assessed by flow cytometry.

Conclusions

These results suggest that NMSO3-liposomes can be applied for selective drug delivery to activated platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PBS:

Phosphate buffered saline

PRP:

Platelet-rich plasma

sLeX:

Sialyl Lewis X

References

  1. Gupta AS, Huang G, Lestini BJ, Sagnella S, Kottke-Marchant K, Marchant RE. RGD-modified liposomes targeted to activated platelets as a potential vascular drug delivery system. Thromb Haemost. 2005;93:106–14.

    PubMed  Google Scholar 

  2. Huang G, Zhou Z, Srinivasan R, Penn MS, Kottke-Marchant K, Marchant RE, et al. Affinity manipulation of surface-conjugated RGD peptide to modulate binding of liposomes to activated platelets. Biomaterials. 2008;29:1676–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Modery CL, Ravikumar M, Wong TL, Dzuricky MJ, Durongkaveroj N, Sen Gupta A. Heteromultivalent liposomal nanoconstructs for enhanced targeting and shear-stable binding to active platelets for site-selective vascular drug delivery. Biomaterials. 2011;32:9504–14.

    Article  PubMed  CAS  Google Scholar 

  4. McEver RP, Moore KL, Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem. 1995;270:11025–8.

    Article  PubMed  CAS  Google Scholar 

  5. Johnston GI, Cook RG, McEver RP. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell. 1989;56:1033–44.

    Article  PubMed  CAS  Google Scholar 

  6. Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, et al. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell. 1993;75:1179–86.

    Article  PubMed  CAS  Google Scholar 

  7. Moore KL, Eaton SF, Lyons DE, Lichenstein HS, Cummings RD, McEver RP. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. J Biol Chem. 1994;269:23318–27.

    PubMed  CAS  Google Scholar 

  8. Wilkins PP, Moore KL, McEver RP, Cummings RD. Tyrosine sulfation of P-selectin glycoprotein ligand-1 is required for high affinity binding to P-selectin. J Biol Chem. 1995;270:22677–80.

    Article  PubMed  CAS  Google Scholar 

  9. Carden DL, Young JA, Granger DN. Pulmonary microvascular injury after intestinal ischemia-reperfusion: role of P-selectin. J Appl Physiol. 1993;75:2529–34.

    PubMed  CAS  Google Scholar 

  10. Winn RK, Liggitt D, Vedder NB, Paulson JC, Harlan JM. Anti-P-selectin monoclonal antibody attenuates reperfusion injury to the rabbit ear. J Clin Invest. 1993;92:2042–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood. 2003;101:2661–6.

    Article  PubMed  CAS  Google Scholar 

  12. Littler AJ, Buckley CD, Wordsworth P, Collins I, Martinson J, Simmons DL. A distinct profile of six soluble adhesion molecules (ICAM-1, ICAM-3, VCAM-1, E-selectin, L-selectin and P-selectin) in rheumatoid arthritis. Br J Rheumatol. 1997;36:164–9.

    Article  PubMed  CAS  Google Scholar 

  13. Kimura K, Mori S, Tomita K, Ohno K, Takahashi K, Shigeta S, et al. Antiviral activity of NMSO3 against respiratory syncytial virus infection in vitro and in vivo. Antiviral Res. 2000;47:41–51.

    Article  PubMed  CAS  Google Scholar 

  14. Kaneko H, Kato K, Mori S, Shigeta S. Antiviral activity of NMSO3 against adenovirus in vitro. Antiviral Res. 2001;52:281–8.

    Article  PubMed  CAS  Google Scholar 

  15. Shodai T, Suzuki J, Kudo S, Itoh S, Terada M, Fujita S, et al. Inhibition of P-selectin-mediated cell adhesion by a sulfated derivative of sialic acid. Biochem Biophys Res Commun. 2003;312:787–93.

    Article  PubMed  CAS  Google Scholar 

  16. Koike J, Nagata K, Kudo S, Tsuji T, Irimura T. Density-dependent induction of TNF-alpha release from human monocytes by immobilized P-selectin. FEBS Lett. 2000;477:84–8.

    Article  PubMed  CAS  Google Scholar 

  17. Tanoue K, Akamatsu N, Katagiri Y, Fujimoto T, Kurokawa T, Iwasa S, et al. Detection of in vivo activated platelets in experimental cerebral thrombosis: studies using a new monoclonal antibody 2 T60, specific for activated human and rabbit platelets. Platelets. 1993;4:31–9.

    Article  PubMed  CAS  Google Scholar 

  18. Itoh S, Yokoyama R, Murase C, Takii T, Tsuji T, Onozaki K. Staphylococcal superantigen-like protein 10 (SSL10) binds to phosphatidylserine and apoptotic cells. Microbiol Immunol. 2012;56:363–71.

    Article  PubMed  CAS  Google Scholar 

  19. Yamada A, Taniguchi Y, Kawano K, Honda T, Hattori Y, Maitani Y. Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clin Cancer Res. 2008;14:8161–8.

    Article  PubMed  CAS  Google Scholar 

  20. Essani NA, Fisher MA, Simmons CA, Hoover JL, Farhood A, Jaeschke H. Increased P-selectin gene expression in the liver vasculature and its role in the pathophysiology of neutrophil-induced liver injury in murine endotoxin shock. J Leukoc Biol. 1998;63:288–96.

    PubMed  CAS  Google Scholar 

  21. Takahashi K, Ohashi K, Abe Y, Mori S, Taniguchi K, Ebina T, et al. Protective efficacy of a sulfated sialyl lipid (NMSO3) against human rotavirus-induced diarrhea in a mouse model. Antimicrob Agents Chemother. 2002;46:420–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Terada M, Fujita S, Suda I, Mastico R. Polysulfated sialic acid derivatives as anti-human immunodeficiency virus. Biomed Pharmacother. 2005;59:423–9.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura M, Terada M, Kamada M, Yokono A, Nakamori S, Ohno T. Mechanistic effect of NMSO3 on replication of human immunodeficiency virus. Antivir Chem Chemother. 2003;14:171–6.

    PubMed  CAS  Google Scholar 

  24. Minaguchi J, Oohashi T, Inagawa K, Ohtsuka A, Ninomiya Y. Transvascular accumulation of Sialyl Lewis X conjugated liposome in inflamed joints of collagen antibody-induced arthritic (CAIA) mice. Arch Histol Cytol. 2008;71:195–203.

    Article  PubMed  Google Scholar 

  25. Hirai M, Minematsu H, Kondo N, Oie K, Igarashi K, Yamazaki N. Accumulation of liposome with Sialyl Lewis X to inflammation and tumor region: application to in vivo bio-imaging. Biochem Biophys Res Commun. 2007;353:553–8.

    Article  PubMed  CAS  Google Scholar 

  26. Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, et al. Increased expression of sialyl Lewisx antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res. 1993;53:3632–7.

    PubMed  CAS  Google Scholar 

  27. Kannagi R. Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression-The Warburg effect revisited. Glycoconj J. 2004;20:353–64.

    Article  PubMed  CAS  Google Scholar 

  28. Julien S, Ivetic A, Grigoriadis A, QiZe D, Burford B, Sproviero D, et al. Selectin ligand sialyl-Lewis x antigen drives metastasis of hormone-dependent breast cancers. Cancer Res. 2011;71:7683–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments and Disclosure

We are grateful to Dr. Masaaki Kurihara (Kurihara Clinic, Tokyo, Japan) for his helpful discussion of the study. We also would like to thank Mr. Y. Hirakouchi and Mr. H. Maruyama (Hoshi University School of Pharmacy and Pharmaceutical Sciences) for their technical assistance. This work was supported in part by the Ministry of Education, Culture, Sports, Science and Technology of Japan, and by the Open Research Center Project.

The authors have no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Tsuji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, S., Kawano, K., Takeshita, K. et al. Development of Liposomal Nanoconstructs Targeting P-selectin (CD62P)-expressing Cells by Using A Sulfated Derivative of Sialic Acid. Pharm Res 31, 2868–2875 (2014). https://doi.org/10.1007/s11095-014-1383-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1383-6

KEY WORDS

Navigation