Pharmaceutical Research

, Volume 31, Issue 9, pp 2326–2334 | Cite as

In Vitro Efficacy of Polysaccharide-Based Nanoparticles Containing Disease-Modifying Antirheumatic Drugs

  • Nan Zhang
  • Patricia R. Wardwell
  • Rebecca A. Bader
Research Paper



To evaluate the therapeutic efficacy of dexamethasone (DM) and methotrexate (MTX) entrapped within polysialic acid (PSA)-trimethyl chitosan (TMC) nanoparticles using an in vitro model of rheumatoid arthritis (RA).


The loading capacity of the PSA-TMC nanoparticles was determined. An RA in vitro model was developed by stimulating a synovial cell line with a proinflammatory mediator. Multiplex immunoassay was used to determine changes in the secretion of interleukin-6 (IL-6), interleukin-8 (IL-8), and granulocyte-macrophage colony-stimulating factor (GM-CSF) by the in vitro model following administration of the DM- and MTX-loaded nanoparticles.


The loading capacity of the PSA-TMC nanoparticles was approximately 0.1 mg of drug/mg of nanoparticle. When applied to our in vitro model of RA, there were no significant differences in the concentrations of IL-6 and IL-8 when comparing the free drugs and drug-loaded nanoparticles, administered at concentration of 0.1 mg/ml and 1.0 mg/ml, respectively.


The present study verified that MTX and DM are able to retain bioactivity when loaded into PSA-TMC nanoparticles. Although in vitro efficacy was not increased, the in vivo efficacy will likely be enhanced by the site-specific targeting conferred by nanoparticle entrapment.


chitosan drug delivery nanoparticles polysialic acid rheumatoid arthritis 





Disease-Modifying Antirheumatic Drug


Granulocyte-Macrophage Colony-Stimulating Factor










Polysialic Acid


Rheumatoid Arthritis


Trimethyl chitosan




Acknowledgments AND DISCLOSURES

We thank David Wilson for assistance with the HPLC in evaluating controlled release of DM from the nanoparticles. Cellular uptake of the nanoparticles was observed under the direction of Dr. Martin B. Forstner. This work was supported by NSF grant CBET-1032506.

Supplementary material

11095_2014_1329_MOESM1_ESM.docx (399 kb)
ESM 1 (DOCX 398 kb)


  1. 1.
    Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Ther. 1993;54(2):205–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Weinblatt ME, Kremer JM. Methotrexate in rheumatoid arthritis. J Am Acad Dermatol. 1988;19(1 Pt 1):126–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Mottram PL. Past, present and future drug treatment for rheumatoid arthritis and systemic lupus erythematosus. Immunol Cell Biol. 2003;81(5):350–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Goodman TA, Polisson RP. Methotrexate: adverse reactions and major toxicities. Rheum Dis Clin N Am. 1994;20(2):513–28.Google Scholar
  5. 5.
    Wolverton SE, Remlinger K. Suggested guidelines for patient monitoring: hepatic and hematologic toxicity attributable to systemic dermatologic drugs. Dermatol Clin. 2007;25(2):195–205. vi–ii.PubMedCrossRefGoogle Scholar
  6. 6.
    Baschant U, Lane NE, Tuckermann J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(11):645–55.PubMedCrossRefGoogle Scholar
  7. 7.
    Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–62.PubMedCrossRefGoogle Scholar
  8. 8.
    Prabaharan M, Mano JF. Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 2005;12(1):41–57.PubMedCrossRefGoogle Scholar
  9. 9.
    Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm. 2002;249(1–2):165–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ. Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release. 2001;73(2–3):255–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16(10):1576–81.PubMedCrossRefGoogle Scholar
  12. 12.
    Katas H, Alpar HO. Development and characterisation of chitosan nanoparticles for siRNA delivery. J Control Release. 2006;115(2):216–25.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang N, Bader RA. Synthesis and characterization of polysialic acid-N-Trimethyl chitosan nanoparticles for drug delivery. NanoLIFE. 2012;2(3):1241003.Google Scholar
  14. 14.
    Jain S, Hreczuk-Hirst DH, McCormack B, Mital M, Epenetos A, Laing P, et al. Polysialylated insulin: synthesis, characterization and biological activity in vivo. Biochim Biophys Acta. 2003;1622(1):42–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Fernandes AI, Gregoriadis G. The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics. Int J Pharm. 2001;217(1–2):215–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Fernandes AI, Gregoriadis G. Polysialylated asparaginase: preparation, activity and pharmacokinetics. Biochim Biophys Acta. 1997;1341(1):26–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Fernandes AGG. FC41 catalase-polysialic acid conjugates. Eur J Pharm Sci. 1994;2(1–2):111.CrossRefGoogle Scholar
  18. 18.
    Fernandes AI, Gregoriadis G. Synthesis, characterization and properties of sialylated catalase. Biochim Biophys Acta. 1996;1293(1):90–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Gregoriadis G, Jain S, Papaioannou I, Laing P. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm [Article]. 2005;300(1-2):125–30.CrossRefGoogle Scholar
  20. 20.
    Gregoriadis G, Fernandes A, Mital M, McCormack B. Polysialic acids: potential in improving the stability and pharmacokinetics of proteins and other therapeutics. Cell Mol Life Sci. 2000;57(13–14):1964–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Gregoriadis G, Fernandes A, McCormack B, Mital M, Zhang X. Polysialic acids: potential role in therapeutic constructs. Biotechnol Genet Eng Rev. 1999;16:203–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Ritchlin C. Fibroblast biology. Effector signals released by the synovial fibroblast in arthritis. Arthritis Res. 2000;2(5):356–60.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7(6):429–42.PubMedCrossRefGoogle Scholar
  24. 24.
    Yamazaki T, Yokoyama T, Akatsu H, Tukiyama T, Tokiwa T. Phenotypic characterization of a human synovial sarcoma cell line, SW982, and its response to dexamethasone. In Vitro Cell Dev Biol-Anim. 2003;39(8-9):337–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Choi EM, Lee YS. Luteolin suppresses IL-1 beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem Toxicol. 2010;48(10):2607–11.PubMedCrossRefGoogle Scholar
  26. 26.
    Wada Y, Shimada K, Kimura T, Ushiyama S. Novel p38 MAP kinase inhibitor R-130823 suppresses IL-6, IL-8 and MMP-13 production in spheroid culture of human synovial sarcoma cell line SW 982. Immunol Lett. 2005;101(1):50–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Wagoner KL, Bader RA. Evaluation of SV40-transformed synovial fibroblasts in the study of rheumatoid arthritis pathogenesis. Rheumatol Int. 2012;32(7):1885–91.PubMedCrossRefGoogle Scholar
  28. 28.
    Polakovic M, Gorner T, Gref R, Dellacherie E. Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J Control Release. 1999;60(2–3):169–77.PubMedCrossRefGoogle Scholar
  29. 29.
    Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford). 2006;45(6):669–75.CrossRefGoogle Scholar
  30. 30.
    Pap T, Muller-Ladner U, Gay RE, Gay S. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Res. 2000;2(5):361–7.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Boddohi S, Moore N, Johnson PA, Kipper MJ. Polysaccharide-based polyelectrolyte complex nanoparticles from chitosan, heparin, and hyaluronan. Biomacromolecules. 2009;10(6):1402–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev. 2001;47(1):83–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo). 2010;58(11):1423–30.CrossRefGoogle Scholar
  34. 34.
    Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, et al. Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;48(6):1521–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Nanki T, Nagasaka K, Hayashida K, Saita Y, Miyasaka N. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. J Immunol. 2001;167(9):5381–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Koch AE. Chemokines and their receptors in rheumatoid arthritis future targets? Arthritis Rheum. 2005;52(3):710–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Seitz M, Loetscher P, Dewald B, Towbin H, Rordorf C, Gallati H, et al. Methotrexate action in rheumatoid arthritis: stimulation of cytokine inhibitor and inhibition of chemokine production by peripheral blood mononuclear cells. Br J Rheumatol. 1995;34(7):602–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Maillefert JF, Puechal X, Falgarone G, Lizard G, Ornetti P, Solau E, et al. Prediction of response to disease modifying antirheumatic drugs in rheumatoid arthritis. Joint Bone Spine. 2010;77(6):558–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60(8):729–35.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chan ESL, Cronstein BN. Methotrexate-how does it really work? Nat Rev Rheumatol. 2010;6(3):175–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Chan ESL, Cronstein BN. Molecular action of methotrexate in inflammatory diseases. Arthritis Res. 2002;4(4):266–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Sung JY, Hong JH, Kang HS, Choi I, Lim SD, Lee JK, et al. Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology. 2000;47(1):35–44.PubMedCrossRefGoogle Scholar
  44. 44.
    Seitz M, Loetscher P, Dewald B, Towbin H, Baggiolini M. In vitro modulation of cytokine, cytokine inhibitor, and prostaglandin E release from blood mononuclear cells and synovial fibroblasts by antirheumatic drugs. J Rheumatol. 1997;24(8):1471–6.PubMedGoogle Scholar
  45. 45.
    Inoue H, Takamori M, Nagata N, Nishikawa T, Oda H, Yamamoto S, et al. An investigation of cell proliferation and soluble mediators induced by interleukin 1beta in human synovial fibroblasts: comparative response in osteoarthritis and rheumatoid arthritis. Inflamm Res. 2001;50(2):65–72.PubMedCrossRefGoogle Scholar
  46. 46.
    Swierkot J, Szechinski J. Methotrexate in rheumatoid arthritis. Pharmacol Rep. 2006;58(4):473–92.PubMedGoogle Scholar
  47. 47.
    Scheinman RI, Gualberto A, Jewell CM, Cidlowski JA, Baldwin AS. Characterization of mechanisms involved in transrepression of NF-Kappa-B by activated glucocorticoid receptors. Mol Cell Biol. 1995;15(2):943–53.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Barnes PJ, Adcock IM. How do corticosteroids work in asthma? Ann Intern Med. 2003;139(5):359–70.PubMedCrossRefGoogle Scholar
  49. 49.
    Leung DYM, Bloom JW. Update on glucocorticoid action and resistance. J Allergy Clin Immunol. 2003;111(1):3–23.PubMedCrossRefGoogle Scholar
  50. 50.
    Muller-Ladner U, Nishioka K. p53 in rheumatoid arthritis: friend or foe? Arthritis Res. 2000;2(3):175–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Tan PL, Farmiloe S, Yeoman S, Watson JD. Expression of the interleukin 6 gene in rheumatoid synovial fibroblasts. J Rheumatol. 1990;17(12):1608–12.PubMedGoogle Scholar
  52. 52.
    Filonzi EL, Zoellner H, Stanton H, Hamilton JA. Cytokine regulation of granulocyte-macrophage colony stimulating factor and macrophage colony-stimulating factor production in human arterial smooth muscle cells. Atherosclerosis. 1993;99(2):241–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Hamilton JA, Piccoli DS, Cebon J, Layton JE, Rathanaswani P, McColl SR, et al. Cytokine regulation of colony-stimulating factor (CSF) production in cultured human synovial fibroblasts. II. Similarities and differences in the control of interleukin-1 induction of granulocyte-macrophage CSF and granulocyte-CSF production. Blood. 1992;79(6):1413–9.PubMedGoogle Scholar
  54. 54.
    Rodrigues S, Dionisio M, Lopez CR, Grenha A. Biocompatibility of chitosan carriers with application in drug delivery. Funct Biomater. 2012;3:615–41.CrossRefGoogle Scholar
  55. 55.
    Guzman-Morales J, Ariganello MB, Hammami I, Thibault M, Jolicoeur M, Hoemann CD. Biodegradable chitosan particles induce chemokine release and negligible arginase-1 activity compared to IL-4 in murine bone marrow-derived macrophages. Biochem Biophys Res Commun. 2011;405(4):538–44.PubMedCrossRefGoogle Scholar
  56. 56.
    Witschi C, Mrsny RJ. In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharm Res. 1999;16(3):382–90.PubMedCrossRefGoogle Scholar
  57. 57.
    Li X, Min M, Du N, Gu Y, Hode T, Naylor M, et al. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol. 2013;2013:387023.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Nan Zhang
    • 1
  • Patricia R. Wardwell
    • 1
  • Rebecca A. Bader
    • 1
  1. 1.Syracuse Biomaterials Institute Department of Biomedical and Chemical EngineeringSyracuse UniversitySyracuseUSA

Personalised recommendations