Pharmaceutical Research

, Volume 31, Issue 6, pp 1588–1604 | Cite as

Marked Differences in the Effect of Antiepileptic and Cytostatic Drugs on the Functionality of P-Glycoprotein in Human and Rat Brain Capillary Endothelial Cell Lines

  • Dana Alms
  • Maren Fedrowitz
  • Kerstin Römermann
  • Andreas Noack
  • Wolfgang Löscher
Research Paper



The expression of P-glycoprotein (Pgp) is increased in brain capillary endothelial cells (BCECs) of patients with pharmacoresistant epilepsy. This may restrict the penetration of antiepileptic drugs (AEDs) into the brain. However, the mechanisms underlying increased Pgp expression in epilepsy patients are not known. One possibility is that AEDs induce the expression and functionality of Pgp in BCECs. Several older AEDs that induce human cytochrome P450 enzymes also induce Pgp in hepatocytes and enterocytes, but whether this extends to Pgp at the human BBB and to newer AEDs is not known.


This prompted us to study the effects of various old and new AEDs on Pgp functionality in the human BCEC line, hCMEC/D3, using the rhodamine 123 (Rho123) efflux assay. For comparison, experiments were performed in two rat BCEC lines, RBE4 and GPNT, and primary cultures of rat and pig BCECs. Furthermore, known Pgp inducers, such as dexamethasone and several cytostatic drugs, were included in our experiments.


Under control conditions, GPNT cells exhibited the highest and RBE4 the lowest Pgp expression and Rho123 efflux, while intermediate values were determined in hCMEC/D3. Known Pgp inducers increased Rho123 efflux in all cell lines, but marked inter-cell line differences in effect size were observed. Of the various AEDs examined, only carbamazepine (100 μM) moderately increased Pgp functionality in hCMEC/D3, while valproate (300 μM) inhibited Pgp.


These data do not indicate that treatment with AEDs causes a clinically relevant induction in Pgp functionality in BCECs that form the BBB.


blood–brain barrier dexamethasone epilepsy nuclear receptors pharmacoresistance 



antiepileptic drugs


analysis of variance


blood–brain barrier


brain capillary endothelial cell


constitutive androstane receptor




porcine brain capillary endothelial cell


phosphate-buffered saline




pregnane X receptor


rat brain capillary endothelial cell


rhodamine 123


room temperature


Acknowledgments and Disclosures

We thank Dr. Pierre-Olivier Couraud (Institut Cochin, Paris, France) for providing hCMEC/D3 cells and Prof. Francoise Roux (INSERM U26, Paris, France) for providing GPNT and RBE4 cells. The study was supported by a grant (Lo 274/10) from the Deutsche Forschungsgemeinschaft (Bonn, Germany). Dana Alms received a PhD scholarship from the FAZIT-Stiftung (Frankfurt am Main, Germany).


  1. 1.
    Schinkel AH. P-Glycoprotein, a gatekeeper in the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:179–94.PubMedCrossRefGoogle Scholar
  2. 2.
    Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci. 2004;25:423–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci. 2010;31:246–54.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.PubMedCrossRefGoogle Scholar
  5. 5.
    Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions. Curr Drug Targets. 2011;12:600–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Lombardo L, Pellitteri R, Balazy M, Cardile V. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res. 2008;5:82–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Ambroziak K, Kuteykin-Teplyakov K, Luna-Tortós C, Al Falah M, Fedrowitz M, Löscher W. Exposure to antiepileptic drugs does not alter the functionality of P-glycoprotein in brain capillary endothelial and kidney cell lines. Eur J Pharmacol. 2010;628:57–66.PubMedCrossRefGoogle Scholar
  8. 8.
    Kullak-Ublick GA, Becker MB. Regulation of drug and bile salt transporters in liver and intestine. Drug Metab Rev. 2003;35:305–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28:249–68.PubMedCrossRefGoogle Scholar
  10. 10.
    Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007;47:566–78.PubMedCrossRefGoogle Scholar
  11. 11.
    Martin P, Riley R, Back DJ, Owen A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol. 2008;153:805–19.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Köhle C, Bock KW. Coordinate regulation of human drug-metabolizing enzymes, and conjugate transporters by the Ah receptor, pregnane X receptor and constitutive androstane receptor. Biochem Pharmacol. 2009;77:689–99.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen T. Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev. 2010;62:1257–64.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Timsit YE, Negishi M. CAR and PXR: the xenobiotic-sensing receptors. Steroids. 2007;72:231–46.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    di Masi A, Marinis ED, Ascenzi P, Marino M. Nuclear receptors CAR and PXR: molecular, functional, and biomedical aspects. Mol Aspects Med. 2009;30:297–343.PubMedCrossRefGoogle Scholar
  16. 16.
    Roux F, Durieu-Trautmann O, Chaverot N, Claire M, Mailly P, Bourre JM, et al. Regulation of gamma-glutamyl transpeptidase and alkaline phosphatase activities in immortalized rat brain microvessel endothelial cells. J Cell Physiol. 1994;159:101–13.PubMedCrossRefGoogle Scholar
  17. 17.
    Régina A, Romero IA, Greenwood J, Adamson P, Bourre JM, Couraud PO, et al. Dexamethasone regulation of P-glycoprotein activity in an immortalized rat brain endothelial cell line, GPNT. J Neurochem. 1999;73:1954–63.PubMedGoogle Scholar
  18. 18.
    Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005;19:1872–4.PubMedGoogle Scholar
  19. 19.
    Roux F, Couraud PO. Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell Mol Neurobiol. 2005;25:41–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, et al. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol. 2009;77:897–909.PubMedCrossRefGoogle Scholar
  21. 21.
    Demeuse P, Fragner P, Leroy-Noury C, Mercier C, Payen L, Fardel O, et al. Puromycin selectively increases mdr1a expression in immortalized rat brain endothelial cell lines. J Neurochem. 2004;88:23–31.PubMedCrossRefGoogle Scholar
  22. 22.
    Male DK. Expression and induction of p-glycoprotein-1 on cultured human brain endothelium. J Cereb Blood Flow Metab. 2009;29:1760–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Zastre JA, Chan GN, Ronaldson PT, Ramaswamy M, Couraud PO, Romero IA, et al. Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line. J Neurosci Res. 2009;87:1023–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Bachmeier CJ, Beaulieu-Abdelahad D, Ganey NJ, Mullan MJ, Levin GM. Induction of drug efflux protein expression by venlafaxine but not desvenlafaxine. Biopharm Drug Dispos. 2011;32:233–44.PubMedCrossRefGoogle Scholar
  25. 25.
    Perloff MD, von Moltke LL, Greenblatt DJ. Ritonavir and dexamethasone induce expression of CYP3A and P-glycoprotein in rats. Xenobiotica. 2004;34:133–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Fox E, Bates SE. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther. 2007;7:447–59.PubMedCrossRefGoogle Scholar
  27. 27.
    Weiss J, Kerpen CJ, Lindenmaier H, Dormann SM, Haefeli WE. Interaction of antiepileptic drugs with human P-glycoprotein in vitro. J Pharmacol Exp Ther. 2003;307:262–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Perrière N, Demeuse P, Garcia E, Regina A, Debray M, Andreux JP, et al. Puromycin-based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier-specific properties. J Neurochem. 2005;93:279–89.PubMedCrossRefGoogle Scholar
  29. 29.
    Patabendige A, Skinner RA, Abbott NJ. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 2013;1521:1–15.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Patabendige A, Skinner RA, Morgan L, Abbott NJ. A detailed method for preparation of a functional and flexible blood–brain barrier model using porcine brain endothelial cells. Brain Res. 2013;1521:16–30.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Smith AJ, Mayer U, Schinkel AH, Borst P. Availability of PSC833, a substrate and inhibitor of P-glycoproteins, in various concentrations of serum. J Natl Cancer Inst. 1998;90:1161–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Löscher W. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007;52:333–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Baltes S, Fedrowitz M, Luna-Tortós C, Potschka H, Löscher W. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther. 2007;320:331–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55:1364–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Efferth T, Lohrke H, Volm M. Reciprocal correlation between expression of P-glycoprotein and accumulation of rhodamine 123 in human tumors. Anticancer Res. 1989;9:1633–7.PubMedGoogle Scholar
  36. 36.
    Vautier S, Milane A, Fernandez C, Buyse M, Chacun H, Farinotti R. Interactions between antiparkinsonian drugs and ABCB1/P-glycoprotein at the blood–brain barrier in a rat brain endothelial cell model. Neurosci Lett. 2008;442:19–23.PubMedCrossRefGoogle Scholar
  37. 37.
    Tai LM, Reddy PS, Lopez-Ramirez MA, Davies HA, Male DK, Loughlin AJ, et al. Polarized P-glycoprotein expression by the immortalised human brain endothelial cell line, hCMEC/D3, restricts apical-to-basolateral permeability to rhodamine 123. Brain Res. 2009;1292:14–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Yang L, Fawcett JP, Ostergaard J, Zhang H, Tucker IG. Mechanistic studies of the effect of bile salts on rhodamine 123 uptake into RBE4 cells. Mol Pharm. 2012;9:29–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Perrière N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, et al. A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res. 2007;1150:1–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology. 2005;49:610–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee JS, Paull K, Alvarez M, Hose C, Monks A, Grever M, et al. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol Pharmacol. 1994;46:627–38.PubMedGoogle Scholar
  42. 42.
    Löscher W, Luna-Tortos C, Römermann K, Fedrowitz M. Do ATP-binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr Pharm Des. 2011;17:2808–28.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev. 2012;64:930–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Robey RW, Honjo Y, van de Laar A, Miyake K, Regis JT, Litman T, et al. A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta. 2001;1512:171–82.PubMedCrossRefGoogle Scholar
  45. 45.
    Aschner M, Fitsanakis VA, dos Santos AP, Olivi L, Bressler JP. Blood–brain barrier and cell-cell interactions: methods for establishing in vitro models of the blood–brain barrier and transport measurements. Methods Mol Biol. 2006;341:1–15.PubMedGoogle Scholar
  46. 46.
    Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve CNS pharmacotherapy. Pharmacol Rev. 2008;60:196–209.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood–brain barrier. Cell Mol Neurobiol. 2010;30:63–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Forster C, Burek M, Romero IA, Weksler B, Couraud PO, Drenckhahn D. Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol. 2008;586:1937–49.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Matheny CJ, Ali RY, Yang X, Pollack GM. Effect of prototypical inducing agents on P-glycoprotein and CYP3A expression in mouse tissues. Drug Metab Dispos. 2004;32:1008–14.PubMedGoogle Scholar
  50. 50.
    Bauer B, Hartz AM, Fricker G, Miller DS. Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood–brain barrier. Mol Pharmacol. 2004;66:413–9.PubMedGoogle Scholar
  51. 51.
    Bauer B, Yang X, Hartz AM, Olson ER, Zhao R, Kalvass JC, et al. In vivo activation of human pregnane X receptor tightens the blood–brain barrier to methadone through P-glycoprotein up-regulation. Mol Pharmacol. 2006;70:1212–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X, Sykes DB, Miller DS. Constitutive androstane receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. Mol Pharmacol. 2010;78:376–83.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Seegers U, Potschka H, Löscher W. Lack of effects of prolonged treatment with phenobarbital or phenytoin on the expression of P-glycoprotein in various rat brain regions. Eur J Pharmacol. 2002;451:149–55.PubMedCrossRefGoogle Scholar
  54. 54.
    Gladding GD, Kupferberg HJ, Swinyard EA. Antiepileptic drug development program. In: Frey H-H, Janz D, editors. Antiepileptic drugs. Berlin: Springer; 1985. p. 341–50.Google Scholar
  55. 55.
    Cerveny L, Svecova L, Anzenbacherova E, Vrzal R, Staud F, Dvorak Z, et al. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos. 2007;35:1032–41.PubMedCrossRefGoogle Scholar
  56. 56.
    Faucette SR, Zhang TC, Moore R, Sueyoshi T, Omiecinski CJ, LeCluyse EL, et al. Relative activation of human pregnane X receptor versus constitutive androstane receptor defines distinct classes of CYP2B6 and CYP3A4 inducers. J Pharmacol Exp Ther. 2007;320:72–80.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang X, Hawkins BT, Miller DS. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood–brain barrier. FASEB J. 2011;25:644–52.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Xu Y, Jiang Z, Yin P, Li Q, Liu J. Role for class I histone deacetylases in multidrug resistance. Exp Cell Res. 2012;318:177–86.PubMedCrossRefGoogle Scholar
  59. 59.
    Eyal S, Lamb JG, Smith-Yockman M, Yagen B, Fibach E, Altschuler Y, et al. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol. 2006;149:250–60.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Narang VS, Fraga C, Kumar N, Shen J, Throm S, Stewart CF, et al. Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am J Physiol Cell Physiol. 2008;295(2):C440–50.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Lemmen J, Tozakidis IE, Galla HJ. Pregnane X receptor upregulates ABC-transporter Abcg2 and Abcb1 at the blood–brain barrier. Brain Res. 2013;1491:1–13.PubMedCrossRefGoogle Scholar
  62. 62.
    Yang HW, Liu HY, Liu X, Zhang DM, Liu YC, Liu XD, et al. Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett. 2008;434:299–303.PubMedCrossRefGoogle Scholar
  63. 63.
    Bauer B, Hartz AM, Fricker G, Miller DS. Modulation of P-glycoprotein transport function at the blood–brain barrier. Exp Biol Med (Maywood). 2005;230:118–27.Google Scholar
  64. 64.
    Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76:192–200.PubMedCrossRefGoogle Scholar
  65. 65.
    Löscher W, Langer O. Imaging of P-glycoprotein function and expression to elucidate mechanisms of pharmacoresistance in epilepsy. Curr Top Med Chem. 2010;10:1785–91.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, et al. Antiepileptic drugs–best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49:1239–76.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Dana Alms
    • 1
    • 2
  • Maren Fedrowitz
    • 1
  • Kerstin Römermann
    • 1
  • Andreas Noack
    • 1
  • Wolfgang Löscher
    • 1
    • 2
  1. 1.Department of Pharmacology, Toxicology, and PharmacyUniversity of Veterinary Medicine HannoverHannoverGermany
  2. 2.Center for Systems NeuroscienceHannoverGermany

Personalised recommendations