Pharmaceutical Research

, Volume 31, Issue 3, pp 531–540 | Cite as

Overcoming the Blood-Brain Barrier in Chemotherapy Treatment of Pediatric Brain Tumors

  • Linfeng Wu
  • Xiaoxun Li
  • Dileep R. Janagam
  • Tao L. Lowe
Expert Review


Pediatric brain tumors are most common cancers in childhood and among the leading causes of death in children. Chemotherapy has been used as adjuvant (i.e. after) or neoadjuvant (i.e. before) therapy to surgery and radiotherapy for the management of pediatric brain tumors for more than four decades and gained more attention in the recent two decades. Although chemotherapy has demonstrated its effectiveness in the management of some pediatric brain tumors, failure or inactiveness of chemotherapy is commonly met in the clinics and clinical trials. Some of these failures might be attributed to the blood-brain barrier (BBB), limiting the penetration of systemically administered chemotherapeutics into pediatric brain tumors. Therefore, various strategies have been developed and used to address this issue. Herein, we review different methods reported in the literature to circumvent the BBB for enhancing the present of chemotherapeutics in the brain to treat pediatric brain tumors.


blood-brain barrier by-passing the BBB chemotherapy disrupting the BBB nanocarriers pediatric brain tumors 


Acknowledgments And Disclosures

The authors thank DOD and the University of Tennessee Health Science Center for financial support.


  1. 1.
    Grondin RT, Scott RM, Smith ER. Pediatric brain tumors. Adv Pediatr. 2009;56:249–69.PubMedGoogle Scholar
  2. 2.
    Ullrichand NJ, Pomeroy SL. Pediatric brain tumors. Neurol Clin. 2003;21:897–913.Google Scholar
  3. 3.
  4. 4.
    Maibiand Z, Mashrabi O. Pediatric brain tumor. Res J Biol Sci. 2009;6:647–50.Google Scholar
  5. 5.
    Muellerand S, Chang S. Pediatric brain tumors: current treatment strategies and future therapeutic approaches. Neurotherapeutics. 2009;6:570–86.Google Scholar
  6. 6.
    Flemingand AJ, Chi SN. Brain tumors in children. Curr Probl Pediatr Adolesc Health Care. 2012;42:80–103.Google Scholar
  7. 7.
    Karajannis M, Allen JC, Newcomb EW. Treatment of pediatric brain tumors. J Cell Physiol. 2008;217:584–9.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Pizerand B, May P. 8 - Central nervous system tumours in children. Eur J Surg Oncol. 1997;23:559–64.Google Scholar
  9. 9.
    Bouffet E, Tabori U, Huang A, Bartels U. Possibilities of new therapeutic strategies in brain tumors. Cancer Treat Rev. 2010;36:335–41.PubMedGoogle Scholar
  10. 10.
    Khatua S, Sadighi ZS, Pearlman ML, Bochare S, Vats TS. Brain tumors in children-current therapies and newer directions. Indian J Pediatr. 2012;79:922–7.PubMedGoogle Scholar
  11. 11.
    Minturnand JE, Fisher MJ. Gliomas in children. Current Treat Options Neurol. 2013;15:316–27.Google Scholar
  12. 12.
    Parekh C, Jubran R, Erdreich-Epstein A, Panigrahy A, Bluml S, Finlay J, et al. Treatment of children with recurrent high grade gliomas with a bevacizumab containing regimen. J Neurooncol. 2011;103:673–80.PubMedGoogle Scholar
  13. 13.
    Couec ML, André N, Thebaud E, Minckes O, Rialland X, Corradini N, et al. Bevacizumab and irinotecan in children with recurrent or refractory brain tumors: toxicity and efficacy trends. Pediatr Blood Cancer. 2012;59:34–8.PubMedGoogle Scholar
  14. 14.
    Zarghooni M, Bartels U, Lee E, Buczkowicz P, Morrison A, Huang A, et al. Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor α and poly (ADP-ribose) polymerase as potential therapeutic targets. J Clin Oncol. 2010;28:1337–44.PubMedGoogle Scholar
  15. 15.
    van Vuurden DG, Hulleman E, Meijer OL, Wedekind LE, Kool M, Witt H, et al. PARP inhibition sensitizes childhood high grade glioma, medulloblastoma and ependymoma to radiation. Oncotarget. 2011;2:984–96.PubMedGoogle Scholar
  16. 16.
    Geyer JR, Stewart CF, Kocak M, Broniscer A, Phillips P, Douglas JG, et al. A phase I and biology study of gefitinib and radiation in children with newly diagnosed brain stem gliomas or supratentorial malignant gliomas. Eur J Cancer. 2010;46:3287–93.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Pollack IF, Stewart CF, Kocak M, Poussaint TY, Broniscer A, Banerjee A, et al. A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: a report from the Pediatric Brain Tumor Consortium. Neuro-Oncology. 2011;13:290–7.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Pollack IF, Jakacki RI, Blaney SM, Hancock ML, Kieran MW, Phillips P, et al. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: a Pediatric Brain Tumor Consortium report. Neuro-Oncology. 2007;9:145–60.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Yalon M, Rood B, MacDonald TJ, McCowage G, Kane R, Constantini S, et al. A feasibility and efficacy study of rapamycin and erlotinib for recurrent pediatric low–grade glioma (LGG). Pediatr Blood Cancer. 2013;60:71–6.PubMedGoogle Scholar
  20. 20.
    Tremont-Lukatsand IW, Gilbert MR. Advances in molecular therapies in patients with brain tumors. Cancer Control. 2003;10:125–37.Google Scholar
  21. 21.
    Haas-Kogan DA, Banerjee A, Kocak M, Prados MD, Geyer JR, Fouladi M, et al. Phase I trial of tipifarnib in children with newly diagnosed intrinsic diffuse brainstem glioma. Neuro-Oncology. 2008;10:341–7.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Broniscer A, Baker JN, Tagen M, Onar-Thomas A, Gilbertson RJ, Davidoff AM, et al. Phase I study of vandetanib during and after radiotherapy in children with diffuse intrinsic pontine glioma. J Clin Oncol. 2010;28:4762–8.PubMedGoogle Scholar
  23. 23.
    Reardon DA, Vredenburgh JJ, Desjardins A, Peters KB, Sathornsumetee S, Threatt S, et al. Phase 1 trial of dasatinib plus erlotinib in adults with recurrent malignant glioma. J Neurooncol. 2012;108:499–506.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Vats TS. Adjuvant chemotherapy of pediatric brain tumors. Ann NY Acad Sci. 1997;824:156–66.Google Scholar
  25. 25.
    Pollackand IF, Jakacki RI. Childhood brain tumors: epidemiology, current management and future directions. Nat Rev Neurol. 2011;7:495–506.Google Scholar
  26. 26.
    Duffner PK, Horowitz ME, Krischer JP, Friedman HS, Burger PC, Cohen ME, et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med. 1993;328:1725–31.PubMedGoogle Scholar
  27. 27.
    Dufour C, Grill J, Lellouch-Tubiana A, Puget S, Chastagner P, Frappaz D, et al. High-grade glioma in children under 5 years of age: a chemotherapy only approach with the BBSFOP protocol. Eur J Cancer. 2006;42:2939–45.PubMedGoogle Scholar
  28. 28.
    Jennings MT, Sposto R, Boyett JM, Vezina LG, Holmes E, Berger MS, et al. Preradiation chemotherapy in primary high-risk brainstem tumors: phase II study CCG-9941 of the children’s cancer group. J Clin Oncol. 2002;20:3431–7.PubMedGoogle Scholar
  29. 29.
    Turner CD, Gururangan S, Eastwood J, Bottom K, Watral M, Beason R, et al. Phase II study of irinotecan (CPT-11) in children with high-risk malignant brain tumors: the Duke experience. Neuro-Oncology. 2002;4:102–8.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Warren K, Jakacki R, Widemann B, Aikin A, Libucha M, Packer R, et al. Phase II trial of intravenous lobradimil and carboplatin in childhood brain tumors: a report from the Children’s Oncology Group. Cancer Chemother Pharmacol. 2006;58:343–7.PubMedGoogle Scholar
  31. 31.
    Grilland J, Bhangoo R. Recent development in chemotherapy of paediatric brain tumours. Curr Opin Oncol. 2007;19:612–5.Google Scholar
  32. 32.
    Bomgaars LR, Bernstein M, Krailo M, Kadota R, Das S, Chen Z, et al. Phase II trial of irinotecan in children with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol. 2007;25:4622–7.PubMedGoogle Scholar
  33. 33.
    Cohen KJ, Heideman RL, Zhou T, Holmes EJ, Lavey RS, Bouffet E, et al. Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: a report from the Children’s Oncology Group. Neuro-Oncology. 2011;13:410–6.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Neuwelt EA, Greig NH, Raffel C, Amar AP, Apuzzo MLJ, Antel JP, et al. Mechanisms of disease: the blood-brain barrier. Neurosurgery. 2004;54:131–42.PubMedGoogle Scholar
  35. 35.
    Virgintino D, Errede M, Robertson D, Capobianco C, Girolamo F, Vimercati A, et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochem Cell Biol. 2004;122:51–9.PubMedGoogle Scholar
  36. 36.
    Iqbal M, Gibb W, Matthews SG. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology. 2011;152:1067–79.PubMedGoogle Scholar
  37. 37.
    Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. NeuroToxicology. 2012;33:586–604.PubMedGoogle Scholar
  38. 38.
    Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA. Transporters of the blood-brain and blood—CSF interfaces in development and in the adult. Mol Asp Med. 2013;34:742–52.Google Scholar
  39. 39.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.PubMedGoogle Scholar
  40. 40.
    Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.PubMedGoogle Scholar
  41. 41.
    Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. 2007;12:54–61.PubMedGoogle Scholar
  42. 42.
    Blakeley J. Drug delivery to brain tumors. Curr Neurol Neurosci Rep. 2008;8:235–41.PubMedGoogle Scholar
  43. 43.
    Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther. 2009;123:80–104.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Kalvass JC, Polli JW, Bourdet DL, Feng B, Huang SM, Liu X, et al. Why clinical modulation of efflux transport at the human blood-brain barrier is unlikely: the ITC evidence-based position. Clin Pharmacol Ther. 2013;94:80–94.PubMedGoogle Scholar
  45. 45.
    El-Bachaand RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol. 1999;45:15–23.Google Scholar
  46. 46.
    Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2011;1812:252–64.Google Scholar
  47. 47.
    Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Asp Med. 2012;33:579–89.Google Scholar
  48. 48.
    Vick NA, Khandekar JD, Bigner DD. Chemotherapy of brain tumors. The ‘blood-brain barrier’ is not a factor. Arch Neurol. 1977;34:523–6.PubMedGoogle Scholar
  49. 49.
    Stewart DJ. A critique of the role of the blood-brain barrier in the chemotherapy of human brain tumors. J Neurooncol. 1994;20:121–39.PubMedGoogle Scholar
  50. 50.
    Elliott PJ, Hayward NJ, Huff MR, Nagle TL, Black KL, Bartus RT. Unlocking the blood-brain barrier: a role for RMP-7 in brain tumor therapy. Exp Neurol. 1996;141:214–24.PubMedGoogle Scholar
  51. 51.
    Schlageter KE, Molnar P, Lapin GD, Groothuis DR. Microvessel organization and structure in experimental brain tumors: microvessel populations with distinctive structural and functional properties. Microvasc Res. 1999;58:312–28.PubMedGoogle Scholar
  52. 52.
    Warren KE, Patel MC, Aikin AA, Widemann B, Libucha M, Adamson PC, et al. Phase I trial of lobradimil (RMP-7) and carboplatin in children with brain tumors. Cancer Chemother Pharmacol. 2001;48:275–82.PubMedGoogle Scholar
  53. 53.
    Gururanganand S, Friedman HS. Innovations in design and delivery of chemotherapy for brain tumors. Neuroimaging Clin N Am. 2002;12:583–97.Google Scholar
  54. 54.
    Blackand KL, Ningaraj NS. Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control. 2004;11:165–73.Google Scholar
  55. 55.
    Haluskaand M, Anthony ML. Osmotic blood-brain barrier modification for the treatment of malignant brain tumors. Clin J Oncol Nurs. 2004;8:263–7.Google Scholar
  56. 56.
    Kioi M, Husain SR, Croteau D, Kunwar S, Puri RK. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat. 2006;5:239–50.PubMedGoogle Scholar
  57. 57.
    Lockman PR, Mittapalli RK, Taskar KS, Rudraraju V, Gril B, Bohn KA, et al. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin Cancer Res. 2010;16:5664–78.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Costantinoand L, Boraschi D. Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today. 2012;17:367–78.Google Scholar
  59. 59.
    Neuwelt EA, Barnett PA, Bigner DD, Frenkel EP. Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc Natl Acad Sci U S A. 1982;79:4420–3.PubMedCentralPubMedGoogle Scholar
  60. 60.
    Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncology. 2000;2:45–9.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Pollack IF, Boyett JM, Finlay JL. Chemotherapy for high-grade gliomas of childhood. Childs Nerv Syst. 1999;15:529–44.PubMedGoogle Scholar
  62. 62.
    McDannold N, Vykhodtseva N, Hynynen K. Blood-brain barrier disruption induced by focused ultrasound and circulating preformed microbubbles appears to be characterized by the mechanical index. Ultrasound Med Biol. 2008;34:834–40.PubMedCentralPubMedGoogle Scholar
  63. 63.
    Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. 2010;255:415–25.PubMedGoogle Scholar
  64. 64.
    Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003;20:409–16.PubMedGoogle Scholar
  65. 65.
    Weiss CK, Kohnle MV, Landfester K, Hauk T, Fischer D, Schmitz-Wienke J, et al. The first step into the brain: uptake of NIO-PBCA nanoparticles by endothelial cells in vitro and in vivo, and direct evidence for their blood-brain barrier permeation. ChemMedChem. 2008;3:1395–403.PubMedGoogle Scholar
  66. 66.
    Vergoni AV, Tosi G, Tacchi R, Vandelli MA, Bertolini A, Costantino L. Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine Nanotechnol Biol Med. 2009;5:369–77.Google Scholar
  67. 67.
    Gil ES, Li J, Xiao H, Lowe TL. Quaternary ammonium β-cyclodextrin nanoparticles for enhancing doxorubicin permeability across the in vitro blood-brain barrier. Biomacromolecules. 2009;10:505–16.PubMedGoogle Scholar
  68. 68.
    Gil ES, Wu L, Xu L, Lowe TL. β-Cyclodextrin-poly(β-Amino Ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomacromolecules. 2012;13:3533–41.PubMedGoogle Scholar
  69. 69.
    Mogami H, Higashi H, Hayakawa T, Kuroda R, Kanai N. Selection of cytostatic agents for intrathecal chemotherapy of brain tumor. Med J Osaka Univ. 1967;17:333–40.PubMedGoogle Scholar
  70. 70.
    Wilsonand CB, Norrell Jr HA. Brain tumor chemotherapy with intrathecal methotrexate. Cancer. 1969;23:1038–45.Google Scholar
  71. 71.
    Kerr JZ, Berg S, Blaney SM. Intrathecal chemotherapy. Crit Rev Oncol Hematol. 2001;37:227–36.PubMedGoogle Scholar
  72. 72.
    Lassaletta A, Lopez-Ibor B, Mateos E, Gonzalez-Vicent M, Perez-Martinez A, Sevilla J, et al. Intrathecal liposomal cytarabine in children under 4 years with malignant brain tumors. J Neurooncol. 2009;95:65–9.PubMedGoogle Scholar
  73. 73.
    Bomgaars L, Geyer JR, Franklin J, Dahl G, Park J, Winick NJ, et al. Phase I trial of intrathecal liposomal cytarabine in children with neoplastic meningitis. J Clin Oncol. 2004;22:3916–21.PubMedGoogle Scholar
  74. 74.
    Parasole R, Menna G, Marra N, Petruzziello F, Locatelli F, Mangione A, et al. Efficacy and safety of intrathecal liposomal cytarabine for the treatment of meningeal relapse in acute lymphoblastic leukemia: experience of two pediatric institutions. Leuk Lymphoma. 2008;49:1553–9.PubMedGoogle Scholar
  75. 75.
    Partap S, Murphy PA, Vogel H, Barnes PD, Edwards MSB, Fisher PG. Liposomal cytarabine for central nervous system embryonal tumors in children and young adults. J Neurooncol. 2011;103:561–6.PubMedGoogle Scholar
  76. 76.
    Hunt Bobo R, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91:2076–80.Google Scholar
  77. 77.
    Fergusonand S, Lesniak MS. Convection enhanced drug delivery of novel therapeutic agents to malignant brain tumors. Curr Drug Deliv. 2007;4:169–80.Google Scholar
  78. 78.
    Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a Phase I/II clinical study. J Neurosurg. 2004;100:472–9.PubMedGoogle Scholar
  79. 79.
    Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM, et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the cintredekin besudotox intraparenchymal study group. J Clin Oncol. 2007;25:837–44.PubMedGoogle Scholar
  80. 80.
    Allard E, Passirani C, Benoit J-P. Convection-enhanced delivery of nanocarriers for the treatment of brain tumors. Biomaterials. 2009;30:2302–18.PubMedGoogle Scholar
  81. 81.
    Kunwar S. Convection enhanced delivery of IL13-PE38QQR for treatment of recurrent malignant glioma: presentation of interim findings from ongoing phase 1 studies. Acta Neurochir Suppl. 2003;88:105–11.PubMedGoogle Scholar
  82. 82.
    Debinskiand W, Tatter SB. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother. 2009;9:1519–27.Google Scholar
  83. 83.
    Bruce JN, Fine RL, Canoll P, Yun J, Kennedy BC, Rosenfeld SS, et al. Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan. Neurosurgery. 2011;69:1272–9.PubMedGoogle Scholar
  84. 84.
    Saito R, Sonoda Y, Kumabe T, Nagamatsu KI, Watanabe M, Tominaga T. Regression of recurrent glioblastoma infiltrating the brainstem after convection-enhanced delivery of nimustine hydrochloride: case report. J Neurosurg Pediatr. 2011;7:522–6.PubMedGoogle Scholar
  85. 85.
    Patrick JT, Nolting MN, Goss SA, Dines KA, Clendenon JL, Rea MA, et al. Ultrasound and the blood-brain barrier. Adv Exp Med Biol. 1990;267:369–81.PubMedGoogle Scholar
  86. 86.
    Dahlborg SA, Petrillo A, Crossen JR, Roman-Goldstein S, Doolittle ND, Fuller KH, et al. The potential for complete and durable response in nonglial primary brain tumors in children and young adults with enhanced chemotherapy delivery. Cancer J Sci Am. 1998;4:110–24.PubMedGoogle Scholar
  87. 87.
    Guillaume DJ, Doolittle ND, Gahramanov S, Hedrick NA, Delashaw JB, Neuwelt EA. Intra-arterial chemotherapy with osmotic blood-brain barrier disruption for aggressive oligodendroglial tumors: results of a phase i study. Neurosurgery. 2010;66:48–58.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Shin BJ, Burkhardt JK, Riina HA, Boockvar JA. Superselective intra-arterial cerebral infusion of novel agents after blood-brain disruption for the treatment of recurrent glioblastoma multiforme: a technical case series. Neurosurg Clin N Am. 2012;23:323–9.PubMedGoogle Scholar
  89. 89.
    Neuwelt EA, Diehl JT, Vu LH. Monitoring of methotrexate delivery in patients with malignant brain tumors after osmotic blood-brain barrier disruption. Ann Intern Med. 1981;94:449–54.PubMedGoogle Scholar
  90. 90.
    Miyagami M, Tsubokawa T, Tazoe M, Kagawa Y. Intra-arterial ACNU chemotherapy employing 20% mannitol osmotic blood-brain barrier disruption for malignant brain tumors. Neurol Med Chir. 1990;30:582–90.Google Scholar
  91. 91.
    Jahnke K, Kraemer DF, Knight KR, Fortin D, Bell S, Doolittle ND, et al. Intraarterial chemotherapy and osmotic blood-brain barrier disruption for patients with embryonal and germ cell tumors of the central nervous system. Cancer. 2008;112:581–8.PubMedGoogle Scholar
  92. 92.
    Angelov L, Doolittle ND, Kraemer DF, Siegal T, Barnett GH, Peereboom DM, et al. Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: a multi-institutional experience. J Clin Oncol. 2009;27:3503–9.PubMedGoogle Scholar
  93. 93.
    Dahlborg SA, Henner WD, Crossen JR, Tableman M, Petrillo A, Braziel R, et al. Non-AIDS primary CNS lymphoma: first example of a durable response in a primary brain tumor using enhanced chemotherapy delivery without cognitive loss and without radiotherapy. Cancer J Sci Am. 1996;2:166–74.PubMedGoogle Scholar
  94. 94.
    Kemper EM, Boogerd W, Thuis I, Beijnen JH, van Tellingen O. Modulation of the blood-brain barrier in oncology: therapeutic opportunities for the treatment of brain tumours? Cancer Treat Rev. 2004;30:415–23.PubMedGoogle Scholar
  95. 95.
    Ford J, Osborn C, Barton T, Bleehen NM. A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma. Eur J Cancer. 1998;34:1807–11.PubMedGoogle Scholar
  96. 96.
    Emerich DF, Dean RL, Osborn C, Bartus RT. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: from concept to clinical evaluation. Clin Pharmacokinet. 2001;40:105–23.PubMedGoogle Scholar
  97. 97.
    Warren K, Gervais A, Aikin A, Egorin M, Balis FM. Pharmacokinetics of carboplatin administered with lobradimil to pediatric patients with brain tumors. Cancer Chemother Pharmacol. 2004;54:206–12.PubMedGoogle Scholar
  98. 98.
    Cloughesy TF, Black KL, Gobin YP, Farahani K, Nelson G, Villablanca P, et al. Intra-arterial cereport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. Neurosurgery. 1999;44:270–9.PubMedGoogle Scholar
  99. 99.
    Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29:1509–17.PubMedGoogle Scholar
  100. 100.
    Dhanikula RS, Argaw A, Bouchard JF, Hildgen P. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol Pharm. 2008;5:105–16.PubMedGoogle Scholar
  101. 101.
    Liand C, Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008;60:886–98.Google Scholar
  102. 102.
    Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, et al. Complete regression of well-established tumors using a novel water- soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res. 1998;58:2404–9.PubMedGoogle Scholar
  103. 103.
    Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 2009;30:592–9.PubMedGoogle Scholar
  104. 104.
    Webb M, Harasym TO, Masin D, Bally MB, Mayer LD. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer. 1995;72:896–904.PubMedCentralPubMedGoogle Scholar
  105. 105.
    Tokes ZA, Stpeteri AK, Todd JA. Availability of liposome content to the nervous system. Liposomes and the blood-brain barrier. Brain Res. 1980;188:282–6.PubMedGoogle Scholar
  106. 106.
    Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2:18–29.Google Scholar
  107. 107.
    Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther. 2011;19:1538–46.PubMedGoogle Scholar
  108. 108.
    Wang L, Zhao W, Tan W. Bioconjugated silica nanoparticles: development and applications. Nano Res. 2008;1:99–115.Google Scholar
  109. 109.
    Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug–delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.PubMedCentralPubMedGoogle Scholar
  110. 110.
    Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008;60:1252–65.PubMedCentralPubMedGoogle Scholar
  111. 111.
    Fan C-H, Ting C-Y, Lin H-J, Wang C-H, Liu H-L, Yen T-C, Yeh C-K. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 2013;34:3706–15.Google Scholar
  112. 112.
    Lu W, Sun Q, Wan J, She ZJ, Jiang XG. Cationic albumin-conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 2006;66:11878–87.PubMedGoogle Scholar
  113. 113.
    Régina A, Demeule M, Ché C, Lavallée I, Poirier J, Gabathuler R, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br J Pharmacol. 2008;155:185–97.PubMedGoogle Scholar
  114. 114.
    Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, Gaasch JA, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res. 2009;26:2486–94.PubMedCentralPubMedGoogle Scholar
  115. 115.
    Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Targeted delivery of chlorotoxin-modified DNA-loaded nanoparticles to glioma via intravenous administration. Biomaterials. 2011;32:2399–406.PubMedGoogle Scholar
  116. 116.
    Nair BG, Varghese SH, Nair R, Yoshida Y, Maekawa T, Kumar DS. Nanotechnology platforms; an innovative approach to brain tumor therapy. Med Chem. 2011;7:488–503.PubMedGoogle Scholar
  117. 117.
    Gaillard P, Gladdines W, Appeldoorn C, Rip J, Boogerd W, Beijnen J, Brandsma D, Van TO. Development of glutathione pegylated liposomal doxorubicin (2B3-101) for the treatment of brain cancer. the 4th European Conference for Clinical Nanomedicine. Basel, Switzerland: (2011).Google Scholar
  118. 118.
    Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy and safety of paclitaxel-loading Angiopep-conjugated dual targeting PEG-PCL nanoparticles. Biomaterials. 2012;33:8167–76.PubMedGoogle Scholar
  119. 119.
    Koo YEL, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, et al. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58:1556–77.PubMedGoogle Scholar
  120. 120.
    Jonesand AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res. 2007;24:1759–71.Google Scholar
  121. 121.
    Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. Aaps J. 2008;10:455–72.PubMedGoogle Scholar
  122. 122.
    Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161:264–73.PubMedGoogle Scholar
  123. 123.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nano. 2007;2:751–60.Google Scholar
  124. 124.
    Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics. 2012;2:3.PubMedCentralPubMedGoogle Scholar
  125. 125.
    Huang H-C, Barua S, Sharma G, Dey SK, Rege K. Inorganic nanoparticles for cancer imaging and therapy. J Control Release. 2011;155:344–57.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Linfeng Wu
    • 1
  • Xiaoxun Li
    • 1
  • Dileep R. Janagam
    • 1
  • Tao L. Lowe
    • 1
  1. 1.Department of Pharmaceutical SciencesUniversity of Tennessee Health Science CenterMemphisUSA

Personalised recommendations