Skip to main content

Advertisement

Log in

Combining Computational Methods for Hit to Lead Optimization in Mycobacterium Tuberculosis Drug Discovery

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Tuberculosis treatments need to be shorter and overcome drug resistance. Our previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis (Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data for building computational models as an approach to minimize the number of compounds tested.

Methods

A cheminformatics clustering approach followed by Bayesian machine learning models (based on publicly available Mtb screening data) was used to illustrate that application of these models for screening set selections can enrich the hit rate.

Results

In order to explore chemical diversity around active cluster scaffolds of the dose–response hits obtained from our previous Mtb screens a set of 1924 commercially available molecules have been selected and evaluated for antitubercular activity and cytotoxicity using Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can significantly enrich the selection of non-toxic actives compared to random selection. Across all cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that seven out of nine Mtb active compounds from different academic published studies and eight out of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified by these Bayesian models.

Conclusion

Combining clustering and Bayesian models represents a useful strategy for compound prioritization and hit-to lead optimization of antitubercular agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Ballel L, Field RA, Duncan K, Young RJ. New small-molecule synthetic antimycobacterials. Antimicrob Agents Chemother. 2005;49:2153–63.

    Article  Google Scholar 

  2. Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, et al. A high-throughput screen to identify inhibitors of ATP homeostasis in Non-replicating mycobacterium tuberculosis. ACS Chem Biol. 2012;7:1190–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Stanley SA, Grant SS, Kawate T, Iwase N, Shimizu M, Wivagg C, et al. Identification of novel inhibitors of M. Tuberculosis growth using whole cell based high-throughput screening. ACS Chem Biol. 2012;7:1377–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, et al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinburgh, Scotland). 2009;89:354–63.

    Article  CAS  Google Scholar 

  5. Ananthan S, Faaleolea ER, Goldman RC, Hobrath JV, Kwong CD, Laughon BE, et al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2009;89:334–53.

    Article  CAS  Google Scholar 

  6. Reynolds RC, Ananthan S, Faaleolea E, Hobrath JV, Kwong CD, Maddox C, et al. High throughput screening of a library based on kinase inhibitor scaffolds against Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinburgh, Scotland). 2012;92:72–83.

    Article  CAS  Google Scholar 

  7. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–90.

    Article  CAS  PubMed  Google Scholar 

  8. Kaneko T, Cooper C, Mdluli K. Challenges and opportunities in developing novel drugs for TB. Future Med Chem. 2011;3:1373–400.

    Article  CAS  PubMed  Google Scholar 

  9. Balganesh TS, Alzari PM, Cole ST. Rising standards for tuberculosis drug development. Trends Pharmacol Sci. 2008;29:576–81.

    Article  CAS  PubMed  Google Scholar 

  10. Gold B, Pingle M, Brickner SJ, Shah N, Roberts J, Rundell M, et al. Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials. Proc Natl Acad Sci U S A. 2012;109:16004–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Magnet S, Hartkoorn RC, Szekely R, Pato J, Triccas JA, Schneider P, et al. Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinburgh, Scotland). 2010;90:354–60.

    Article  CAS  Google Scholar 

  12. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, et al. Impact of high-throughput screening in biomedical research. Nat Rev. 2011;10:188–95.

    CAS  Google Scholar 

  13. Nathan C. Making space for anti-infective drug discovery. Cell Host Microbe. 2011;9:343–8.

    Article  CAS  PubMed  Google Scholar 

  14. Periwal V, Rajappan JK, Jaleel AU, Scaria V. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res Notes. 2011;4:504.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Periwal V, Kishtapuram S, Consortium OS, Scaria V. Computational models for in-vitro anti-tubercular activity of molecules based on high-throughput chemical biology screening datasets. BMC Pharmacol. 2012;12:1.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Prathipati P, Ma NL, Keller TH. Global Bayesian models for the prioritization of antitubercular agents. J Chem inf Model. 2008;48:2362–70.

    Article  CAS  PubMed  Google Scholar 

  17. Ekins S, Bradford J, Dole K, Spektor A, Gregory K, Blondeau D, et al. A collaborative database and computational models for tuberculosis drug discovery. Mol BioSyst. 2010;6:840–51.

    Article  CAS  PubMed  Google Scholar 

  18. Ekins S, Kaneko T, Lipinksi CA, Bradford J, Dole K, Spektor A, et al. Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol BioSyst. 2010;6:2316–24.

    Article  CAS  PubMed  Google Scholar 

  19. Ekins S, Freundlich JS. Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets. Pharm Res. 2011;28:1859–69.

    Article  CAS  PubMed  Google Scholar 

  20. Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases. Pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol. 2011;19:65–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sarker M, Talcott C, Madrid P, Chopra S, Bunin BA, Lamichhane G, et al. Combining cheminformatics methods and pathway analysis to identify molecules with whole-cell activity against Mycobacterium tuberculosis. Pharm Res. 2012;29:2115–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ekins S, Reynolds R, Kim H, Koo M-S, Ekonomidis M, Talaue M, et al. Bayesian models leveraging bioactivity and cytotoxicity information for drug discovery. Chem Biol. 2013;20:370–8.

    Article  CAS  PubMed  Google Scholar 

  23. Singh N, Chaudhury S, Liu R, Abdulhameed MD, Tawa G, Wallqvist A. QSAR classification model for antibacterial compounds and its use in virtual screening. J Chem Inf Model. 2012;52:2559–69.

    Article  CAS  PubMed  Google Scholar 

  24. Ekins S, Reynolds RC, Franzblau SG, Wan B, Freundlich JS, Bunin BA. Enhancing hit identification in mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models. PLOSONE. 2013;8:e63240.

    Article  CAS  Google Scholar 

  25. Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev. 2010;9:203–14.

    CAS  Google Scholar 

  26. Wilkens SJ, Janes J, Su AI. HierS: hierarchical scaffold clustering using topological chemical graphs. J Med Chem. 2005;48:3182–93.

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira RS, Simeonov A, Jadhav A, Eidam O, Mott BT, Keiser MJ, et al. Complementarity between a docking and a high-throughput screen in discovering new cruzain inhibitors. J Med Chem. 2010;53:4891–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Collaborative Drug Discovery, Inc. http://www.collaborativedrug.com/register.

  29. Ekins S, Gupta RR, Gifford E, Bunin BA, Waller CL. Chemical space: missing pieces in cheminformatics. Pharm Res. 2010;27:2035–9.

    Article  CAS  PubMed  Google Scholar 

  30. Hohman M, Gregory K, Chibale K, Smith PJ, Ekins S, Bunin B. Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. Drug Disc Today. 2009;14:261–70.

    Article  CAS  Google Scholar 

  31. The PubChem Database. http://pubchem.ncbi.nlm.nih.gov/.

  32. Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997;41:1004–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Falzari K, Zhu Z, Pan D, Liu H, Hongmanee P, Franzblau SG. In vitro and in vivo activities of macrolide derivatives against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005;49:1447–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, et al. Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland). 2012;92:453–88.

    Article  CAS  Google Scholar 

  35. Bender A, Scheiber J, Glick M, Davies JW, Azzaoui K, Hamon J, et al. Analysis of pharmacology data and the prediction of adverse drug reactions and off-target effects from chemical structure. ChemMedChem. 2007;2:861–73.

    Article  CAS  PubMed  Google Scholar 

  36. Klon AE, Lowrie JF, Diller DJ. Improved naive Bayesian modeling of numerical data for absorption, distribution, metabolism and excretion (ADME) property prediction. J Chem Inf Model. 2006;46:1945–56.

    Article  CAS  PubMed  Google Scholar 

  37. Hassan M, Brown RD, Varma-O’brien S, Rogers D. Cheminformatics analysis and learning in a data pipelining environment. Mol Divers. 2006;10:283–99.

    Article  CAS  PubMed  Google Scholar 

  38. Rogers D, Brown RD, Hahn M. Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen. 2005;10:682–6.

    Article  CAS  PubMed  Google Scholar 

  39. Jones DR, Ekins S, Li L, Hall SD. Computational approaches that predict metabolic intermediate complex formation with CYP3A4 (+b5). Drug Metab Dispos. 2007;35:1466–75.

    Article  CAS  PubMed  Google Scholar 

  40. Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V et al. Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. Chem Med Chem (2013).

  41. Clark AM. Basic primitives for molecular diagram sketching. J Cheminform. 2010;2:8.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Clark AM, Williams AJ, Ekins S. Cheminformatics workflows using mobile apps. Chem-Bio Informa J. 2013;13:1–18.

    Article  Google Scholar 

  43. Payne DA, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Disc. 2007;6:29–40.

    Article  CAS  Google Scholar 

  44. Merget B, Zilian D, Muller T, Sotriffer CA. MycPermCheck: the mycobacterium tuberculosis permeability prediction tool for small molecules. Bioinformatics (Oxford, England). 2012;29:62–8.

    Article  Google Scholar 

  45. Nathan C. Fresh approaches to anti-infective therapies. Sci transl Med. 2012;4:140sr142.

    Article  Google Scholar 

  46. Gamo F-J, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera J-L, et al. Thousands of chemical starting points for antimalarial lead identification. Nature. 2010;465:305–10.

    Article  CAS  PubMed  Google Scholar 

  47. Pan Y, Li L, Kim G, Ekins S, Wang H, Swaan PW. Identification and validation of novel hPXR activators amongst prescribed drugs via ligand-based virtual screening. Drug metabol Dispos: Biol Fate Chem. 2011;39:337–44.

    Article  CAS  Google Scholar 

  48. Zientek M, Stoner C, Ayscue R, Klug-McLeod J, Jiang Y, West M, et al. Integrated in silico-in vitro strategy for addressing cytochrome P450 3A4 time-dependent inhibition. Chem Res Toxicol. 2010;23:664–76.

    Article  CAS  PubMed  Google Scholar 

  49. Langdon SR, Mulgrew J, Paolini GV, van Hoorn WP. Predicting cytotoxicity from heterogeneous data sources with Bayesian learning. J Cheminform. 2010;2:11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lin Z, Will Y. Evaluation of drugs with specific organ toxicities in organ-specific cell lines. Toxicol Sci. 2012;126:114–27.

    Article  CAS  PubMed  Google Scholar 

  51. Remuinan MJ, Perez-Herran E, Rullas J, Alemparte C, Martinez-Hoyos M, Dow DJ, et al. Tetrahydropyrazolo[1,5-a]Pyrimidine-3-Carboxamide and N-Benzyl-6′,7′-Dihydrospiro[Piperidine-4,4′-Thieno[3,2-c]Pyran] analogues with bactericidal efficacy against mycobacterium tuberculosis targeting MmpL3. PloS One. 2013;8:e60933.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yokokawa F, Wang G, Chan WL, Ang SH, Wong J, Ma I et al. Discovery of tetrahydropyrazolopyrimidine carboxamide derivatives as potent and orally active antitubercular agents. ACS Med Chem Lett. (2013).

  53. Grzegorzewicz AE, Pham H, Gundi VA, Scherman MS, North EJ, Hess T, et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol. 2012;8:334–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

S.E. acknowledges colleagues at CDD. Accelrys are kindly acknowledged for providing Discovery Studio. The Bayesian models created in Discovery Studio are available from the authors upon written request.

The CDD TB has been developed thanks to funding from the Bill and Melinda Gates Foundation (Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing”).

R.C.R. acknowledges the American Reinvestment and Recovery Act Grant 1RC1AI086677-01 that provided support for the presented study (National Institutes of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID)) – “Targeting MDR-Tuberculosis.”

S.E. acknowledges that the Bayesian models described were developed with support from Award Number R43 LM011152-01 “Biocomputation across distributed private datasets to enhance drug discovery” from the National Library of Medicine.

J.S.F. acknowledges funding from UMDNJ–NJMS and the Foundation of UMDNJ.

SE is a consultant for Collaborative Drug Discovery, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Ekins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

1924 molecules with data used in this study with Bayesian model predictions. The complete dataset created under this grant is available as a public dataset TB: ARRA which is available upon registration http://web.collaborativedrug.com/pages/signup (XLSX 1619 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekins, S., Freundlich, J.S., Hobrath, J.V. et al. Combining Computational Methods for Hit to Lead Optimization in Mycobacterium Tuberculosis Drug Discovery. Pharm Res 31, 414–435 (2014). https://doi.org/10.1007/s11095-013-1172-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1172-7

KEY WORDS

Navigation