Skip to main content
Log in

Prediction of Shrinkage of Individual Parameters Using the Bayesian Information Matrix in Non-Linear Mixed Effect Models with Evaluation in Pharmacokinetics

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

When information is sparse, individual parameters derived from a non-linear mixed effects model analysis can shrink to the mean. The objective of this work was to predict individual parameter shrinkage from the Bayesian information matrix (M BF ). We 1) Propose and evaluate an approximation of M BF by First-Order linearization (FO), 2) Explore by simulations the relationship between shrinkage and precision of estimates and 3) Evaluate prediction of shrinkage and individual parameter precision.

Methods

We approximated M BF using FO. From the shrinkage formula in linear mixed effects models, we derived the predicted shrinkage from M BF . Shrinkage values were generated for parameters of two pharmacokinetic models by varying the structure and the magnitude of the random effect and residual error models as well as the design. We then evaluated the approximation of M BF FO and compared it to Monte-Carlo (MC) simulations. We finally compared expected and observed shrinkage as well as the predicted and estimated Standard Errors (SE) of individual parameters.

Results

M BF FO was similar to M BF MC. Predicted and observed shrinkages were close . Predicted and estimated SE were similar.

Conclusions

M BF FO enables prediction of shrinkage and SE of individual parameters. It can be used for design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CL:

Clearance

CV:

Coefficient of Variation

FO:

First-Order linearization

IU:

International Units

Km :

Michaelis-Menten constant

MAP:

Maximum A Posteriori

M BF :

Bayesian Fisher Information Matrix

MC:

Monte-Carlo

M F :

Fisher Information Matrix

M IBF :

Individual Bayesian Fisher Information Matrix

M IF :

Individual Fisher Information Matrix

ML:

Maximum Likelihood

MONOLIX:

MOdèles NOn LInéaires à effets miXtes

NLMEM:

Non-Linear Mixed Effects Models

PK:

Pharmacokinetics

Q:

Intercompartmental clearance

RSE:

Relative Standard Errors

SE:

Standard Errors

Sh:

Shrinkage

V:

Volume of distribution

V1-V2 :

Volume of distribution of the central and peripheral compartment

Vm :

Maximum elimination rate

REFERENCES

  1. Pillai GC, Mentré F, Steimer J-L. Non-linear mixed effects modeling - from methodology and software development to driving implementation in drug development science. J Pharmacokinet Pharmacodyn. 2005;32(2):161–83.

    Article  PubMed  CAS  Google Scholar 

  2. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM User’s guides. (1989–2009), Icon development Solutions, Ellicott City, USA 2009.

  3. www.lixoft.com.

  4. Al-Banna MK, Kelman AW. Experimental design and efficient parameter estimation in population pharmacokinetics. J Pharmacokinet Biopharm. 1990;18(4):347–60.

    Article  PubMed  CAS  Google Scholar 

  5. Holford NH, Kimko HC, Monteleone JP, Peck CC. Simulation of clinical trials. Annu Rev Pharmacol Toxicol. 2000;40:209–34.

    Article  PubMed  CAS  Google Scholar 

  6. Atkinson AC, Donev AN. Optimum experimental designs. Oxford: Oxford University Press; 1992.

    Google Scholar 

  7. Fisher RA. The logic of inductive inference. J R Stat Soc. 1935;98(1):39–54.

    Article  Google Scholar 

  8. Mentré F, Mallet A, Baccar D. Optimal design in random-effects regression models. Biometrika. 1997;84(2):429–42.

    Article  Google Scholar 

  9. Retout S, Mentré F, Bruno R. Fisher information matrix for non-linear mixed-effects models: evaluation and application for optimal design of enoxaparin population pharmacokinetics. Stat Med. 2002;21(18):2623–39.

    Article  PubMed  Google Scholar 

  10. Bazzoli C, Retout S, Mentré F. Design evaluation and optimisation in multiple response non-linear mixed effect models: PFIM 3.0. Comput Methods Prog Biomed. 2010;98(1):55–65.

    Article  Google Scholar 

  11. Nyberg J, Ueckert S, Strömberg EA, Hennig S, Karlsson MO, Hooker AC. PopED: an extended, parallelized, nonlinear mixed effects models optimal design tool. Comput Methods Prog Biomed. 2012;108(2):789–805.

    Article  Google Scholar 

  12. Gueorguieva I, Ogungbenro K, Graham G, Glatt S, Aarons L. A program for individual and population optimal design for univariate and multivariate response pharmacokinetic-pharmacodynamic models. Comput Methods Prog Biomed. 2007;86(1):51–61.

    Article  Google Scholar 

  13. http://www.winpopt.com/

  14. Foo LK, Duffull S. Adaptive optimal design for bridging studies with an application to population pharmacokinetic studies. Pharm Res. 2012;29(6):1530–43.

    Article  PubMed  CAS  Google Scholar 

  15. Foo LK, Duffull S. Methods of robust design of non-linear models with an application to pharmacokinetics. J Biopharm Stat. 2010;20(4):886–902.

    Article  PubMed  Google Scholar 

  16. Retout S, Mentré F. Optimization of individual and population designs using Splus. J Pharmacokinet Pharmacodyn. 2003;30(6):417–43.

    Article  PubMed  Google Scholar 

  17. Merlé Y, Mentré F. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J Pharmacokinet Biopharm. 1995;23(1):101–25.

    Article  PubMed  Google Scholar 

  18. Sheiner LB, Beal S, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clin Pharmacol Ther. 1979;26(3):294–305.

    PubMed  CAS  Google Scholar 

  19. Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. J Pharm Sci. 1982;71(12):1344–8.

    Article  PubMed  CAS  Google Scholar 

  20. Fedorov F. Mixed models: design of experiments. Presented at Design and analysis of experiments, Cambridge, UK. 11th August 2011 (http://www.newton.ac.uk/programmes/DAE/seminars/081109301.html).

  21. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed  Google Scholar 

  22. Mentré F, Burtin P, Merlé Y, Van Bree J, Mallet A, Steimer J-L. Sparse-sampling optimal designs in pharmacokinetics and toxicokinetics. Drug Inf J. 1995;29(3):997–1019.

    Google Scholar 

  23. Frey N, Grange S, Woodworth T. Population pharmacokinetic analysis of tocilizumab in subjects with rheumatoid arthritis. J Clin Pharmacol. 2010;50(7):754–66.

    Article  PubMed  CAS  Google Scholar 

  24. Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer; 2000.

    Google Scholar 

  25. Pilz J. Bayesian estimation and experimental design in linear regression models. Leipzig: Teubner-Texte; 1983.

    Google Scholar 

  26. Boeckmann AJ, Sheiner LB, Beal SL. NONMEM users guide – Part V introductory guide. Ellicott City: Icon development Solutions; 2011.

    Google Scholar 

  27. McGree JM, Eccleston JA, Duffull SB. Compound optimal design criteria for nonlinear models. J Biopharm Stat. 2008;18(4):646–61.

    Article  PubMed  CAS  Google Scholar 

  28. Jones B, Wang J. Constructing optimal designs for fitting pharmacokinetic models. Stat Comput. 1999;9(3):209–18.

    Article  Google Scholar 

  29. Jones B, Wang J, Jarvis P, Byrom W. Design of cross-over trials for pharmacokinetic studies. J Stat Plan Infer. 1999;78(1–2):307–16.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

During this work, the PhD of F. Combes was sponsored by a Convention Industrielle de Formation par la Recherche (CIFRE) from the French government and the Institut Roche de Recherche et Médecine Translationnelle. The authors thank IFR02 and Dr. Hervé Le Nagard for the use of the Centre de Biomodélisation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Pierre Combes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combes, F.P., Retout, S., Frey, N. et al. Prediction of Shrinkage of Individual Parameters Using the Bayesian Information Matrix in Non-Linear Mixed Effect Models with Evaluation in Pharmacokinetics. Pharm Res 30, 2355–2367 (2013). https://doi.org/10.1007/s11095-013-1079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1079-3

KEY WORDS

Navigation