Skip to main content

Advertisement

Log in

Novel Biotinylated Lipid Prodrugs of Acyclovir for the Treatment of Herpetic Keratitis (HK): Transporter Recognition, Tissue Stability and Antiviral Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Biotinylated lipid prodrugs of acyclovir (ACV) were designed to target the sodium dependent multivitamin transporter (SMVT) on the cornea to facilitate enhanced cellular absorption of ACV.

Methods

All the prodrugs were screened for in vitro cellular uptake, interaction with SMVT, docking analysis, cytotoxicity, enzymatic stability and antiviral activity.

Results

Uptake of biotinylated lipid prodrugs of ACV (B-R-ACV and B-12HS-ACV) was significantly higher than biotinylated prodrug (B-ACV), lipid prodrugs (R-ACV and 12HS-ACV) and ACV in corneal cells. Transepithelial transport across rabbit corneas indicated the recognition of the prodrugs by SMVT. Average Vina scores obtained from docking studies further confirmed that biotinylated lipid prodrugs possess enhanced affinity towards SMVT. All the prodrugs studied did not cause any cytotoxicity and were found to be safe and non-toxic. B-R-ACV and B-12HS-ACV were found to be relatively more stable in ocular tissue homogenates and exhibited excellent antiviral activity.

Conclusions

Biotinylated lipid prodrugs demonstrated synergistic improvement in cellular uptake due to recognition of the prodrugs by SMVT on the cornea and lipid mediated transcellular diffusion. These biotinylated lipid prodrugs appear to be promising drug candidates for the treatment of herpetic keratitis (HK) and may lower ACV resistance in patients with poor clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

12HS-ACV:

12hydroxystearicacid-acyclovir

ACV:

Acyclovir

B-12HS-ACV:

Biotin-12hydroxystearicacid-acyclovir

B-ACV:

Biotin-acyclovir

B-R-ACV:

Biotin-ricinoleicacid-acyclovir

EBV:

Epstein - Barr virus

HCEC:

Human corneal epithelial cells

HCMV:

Human cytomegalovirus

HK:

Herpetic keratitis

HSV:

Herpes simplex virus

LC/MS/MS:

Liquid chromatography-tandem mass spectrometry

R-ACV:

Ricinoleicacid-acyclovir

rPCEC:

Rabbit primary corneal epithelial cells

SMVT:

Sodium dependent multivitamin transporter

REFERENCES

  1. Duan R, de Vries RD, Osterhaus AD, Remeijer L, Verjans GM. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis. 2008;198(5):659–63.

    Article  PubMed  CAS  Google Scholar 

  2. Remeijer L, Osterhaus A, Verjans G. Human herpes simplex virus keratitis: the pathogenesis revisited. Ocul Immunol Inflamm. 2004;12(4):255–85.

    Article  PubMed  Google Scholar 

  3. Rowe AM, St. Leger AJ, Jeon S, Dhaliwal DK, Knickelbein JE, Hendricks RL. Herpes keratitis. Progress in Retinal and Eye Research. 2013;32(0):88–101.

    Article  PubMed  CAS  Google Scholar 

  4. Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother. 2011;55(2):459–72.

    Article  PubMed  CAS  Google Scholar 

  5. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA. 2006;296(8):964–73.

    Article  PubMed  CAS  Google Scholar 

  6. Al-Dujaili LJ, Clerkin PP, Clement C, McFerrin HE, Bhattacharjee PS, Varnell ED, et al. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? Future Microbiol. 2011;6(8):877–907.

    Article  PubMed  Google Scholar 

  7. Webre JM, Hill JM, Nolan NM, Clement C, McFerrin HE, Bhattacharjee PS, et al. Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases. J Biomed Biotechnol. 2012;2012:612316.

    Article  PubMed  Google Scholar 

  8. Vadlapudi AD, Vadlapatla RK. Mitra AK. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective. Recent Pat Antiinfect Drug Discov. 2013;8(1):55–67.

  9. Kennedy DP, Clement C, Arceneaux RL, Bhattacharjee PS, Huq TS, Hill JM. Ocular herpes simplex virus type 1: is the cornea a reservoir for viral latency or a fast pit stop? Cornea. 2011;30(3):251–9.

    Article  PubMed  Google Scholar 

  10. Kennedy DP, Clement C, Arceneaux RL, Bhattacharjee PS, Huq TS, Hill JM. Ocular Herpes Simplex Virus Type 1: Is the Cornea a Reservoir for Viral Latency or a Fast Pit Stop? Cornea. 2010. doi:10.1097/01.ico.0000391265.52134.f0

  11. Cantin EM, Chen J, McNeill J, Willey DE, Openshaw H. Detection of herpes simplex virus DNA sequences in corneal transplant recipients by polymerase chain reaction assays. Curr Eye Res. 1991;10(Suppl):15–21.

    Article  PubMed  Google Scholar 

  12. Easty DL, Shimeld C, Claoue CM, Menage M. Herpes simplex virus isolation in chronic stromal keratitis: human and laboratory studies. Curr Eye Res. 1987;6(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  13. Coupes D, Klapper PE, Cleator GM, Bailey AS, Tullo AB. Herpesvirus simplex in chronic human stromal keratitis. Curr Eye Res. 1986;5(10):735–8.

    Article  PubMed  CAS  Google Scholar 

  14. Tullo AB, Easty DL, Shimeld C, Stirling PE, Darville JM. Isolation of herpes simplex virus from corneal discs of patients with chronic stromal keratitis. Trans Ophthalmol Soc U K. 1985;104(Pt 2):159–65.

    PubMed  Google Scholar 

  15. Shimeld C, Tullo AB, Easty DL, Thomsitt J. Isolation of herpes simplex virus from the cornea in chronic stromal keratitis. Br J Ophthalmol. 1982;66(10):643–7.

    Article  PubMed  CAS  Google Scholar 

  16. Thuret G, Acquart S, Gain P, Dumollard JM, Manissolle C, Campos-Guyotat L, et al. Ultrastructural demonstration of replicative herpes simplex virus type 1 transmission through corneal graft. Transplantation. 2004;77(2):325–6.

    Article  PubMed  Google Scholar 

  17. Remeijer L, Maertzdorf J, Doornenbal P, Verjans GM, Osterhaus AD. Herpes simplex virus 1 transmission through corneal transplantation. Lancet. 2001;357(9254):442.

    Article  PubMed  CAS  Google Scholar 

  18. Openshaw H, McNeill JI, Lin XH, Niland J, Cantin EM. Herpes simplex virus DNA in normal corneas: persistence without viral shedding from ganglia. J Med Virol. 1995;46(1):75–80.

    Article  PubMed  CAS  Google Scholar 

  19. Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, Hill JM. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci. 2005;46(1):241–7.

    Article  PubMed  Google Scholar 

  20. Abiko Y, Ikeda M, Hondo R. Secretion and dynamics of herpes simplex virus in tears and saliva of patients with Bell’s palsy. Otol Neurotol. 2002;23(5):779–83.

    Article  PubMed  Google Scholar 

  21. Yamamoto S, Shimomura Y, Kinoshita S, Nishida K, Yamamoto R, Tano Y. Detection of herpes simplex virus DNA in human tear film by the polymerase chain reaction. Am J Ophthalmol. 1994;117(2):160–3.

    PubMed  CAS  Google Scholar 

  22. Uchoa UB, Rezende RA, Carrasco MA, Rapuano CJ, Laibson PR, Cohen EJ. Long-term acyclovir use to prevent recurrent ocular herpes simplex virus infection. Arch Ophthalmol. 2003;121(12):1702–4.

    Article  PubMed  CAS  Google Scholar 

  23. Liesegang TJ. Herpes simplex virus epidemiology and ocular importance. Cornea. 2001;20(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  24. Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19(8):1194–202.

    Article  PubMed  CAS  Google Scholar 

  25. Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev. 2003;16(1):114–28.

    Article  PubMed  CAS  Google Scholar 

  26. Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  27. Choong K, Walker NJ, Apel AJ, Whitby M. Aciclovir-resistant herpes keratitis. Clin Experiment Ophthalmol. 2010;38(3):309–13.

    PubMed  Google Scholar 

  28. Wilson SS, Fakioglu E, Herold BC. Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti Infect Ther. 2009;7(5):559–68.

    Article  PubMed  CAS  Google Scholar 

  29. Vadlapudi AD, Vadlapatla RK, Kwatra D, Earla R, Samanta SK, Pal D, et al. Targeted lipid based drug conjugates: A novel strategy for drug delivery. Int J Pharm. 2012;434(1–2):315–24.

    Article  PubMed  CAS  Google Scholar 

  30. Karla PK, Quinn TL, Herndon BL, Thomas P, Pal D, Mitra A. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux. J Ocul Pharmacol Ther. 2009;25(2):121–32.

    Article  PubMed  CAS  Google Scholar 

  31. Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Functional and Molecular Aspects of Biotin Uptake via SMVT in Human Corneal Epithelial (HCEC) and Retinal Pigment Epithelial (D407) Cells. AAPS J. 2012;14(4):832–42.

    Article  PubMed  Google Scholar 

  32. Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res. 2006;31(10):797–809.

    Article  PubMed  CAS  Google Scholar 

  33. Dey S, Patel J, Anand BS, Jain-Vakkalagadda B, Kaliki P, Pal D, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(7):2909–18.

    Article  PubMed  Google Scholar 

  34. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–38.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Proteins. 2009;77 Suppl 9:100–13.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 2008;9:40.

    Article  Google Scholar 

  37. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.

    PubMed  CAS  Google Scholar 

  38. Katragadda S, Talluri RS, Mitra AK. Simultaneous modulation of transport and metabolism of acyclovir prodrugs across rabbit cornea: An approach involving enzyme inhibitors. Int J Pharm. 2006;320(1–2):104–13 [Comparative Study Research Support, N.I.H., Extramural].

    Article  PubMed  CAS  Google Scholar 

  39. Tak RV, Pal D, Gao H, Dey S, Mitra AK. Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line. J Pharm Sci. 2001;90(10):1505–15 [Comparative Study Research Support, U.S. Gov't, P.H.S.].

    Article  PubMed  CAS  Google Scholar 

  40. Earla R, Boddu SH, Cholkar K, Hariharan S, Jwala J, Mitra AK. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids–quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2010;52(4):525–33.

    Article  PubMed  CAS  Google Scholar 

  41. Prichard MN, Keith KA, Quenelle DC, Kern ER. Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob Agents Chemother. 2006;50(4):1336–41.

    Article  PubMed  CAS  Google Scholar 

  42. Prichard MN, Daily SL, Jefferson GM, Perry AL, Kern ER. A rapid DNA hybridization assay for the evaluation of antiviral compounds against Epstein-Barr virus. J Virol Methods. 2007;144(1–2):86–90.

    Article  PubMed  CAS  Google Scholar 

  43. Gill RB, Frederick SL, Hartline CB, Chou S, Prichard MN. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir. Virol J. 2009;6:9.

    Article  PubMed  Google Scholar 

  44. Dias CS, Anand BS, Mitra AK. Effect of mono- and di-acylation on the ocular disposition of ganciclovir: physicochemical properties, ocular bioreversion, and antiviral activity of short chain ester prodrugs. J Pharm Sci. 2002;91(3):660–8.

    Article  PubMed  CAS  Google Scholar 

  45. Lambert DM. Rationale and applications of lipids as prodrug carriers. Eur J Pharm Sci. 2000;11 Suppl 2:S15–27.

    Article  PubMed  CAS  Google Scholar 

  46. Chang SC, Lee VH. Influence of chain length on the in vitro hydrolysis of model ester prodrugs by ocular esterases. Curr Eye Res. 1982;2(10):651–6.

    Article  PubMed  Google Scholar 

  47. Talluri RS, Hariharan S, Karla PK, Mitra AK. Drug delivery to cornea and conjunctiva-esterase and protease directed prodrug design. In: Dartt DA, Bex P, D’Amore P, Dana R, Mcloon L & Niederkorn J, editors. Ocular Periphery and Disorders. San Deigo, California, USA: Elsevier, Academic Press Elsevier Ltd; 2011. p. 303–314.

  48. Atluri H, Tirucherai GS, Dias CS, Patel J, Mitra AK. Ocular, Nasal, Pulmonary, and Otic Routes of Drug Delivery. In: Bhaskara R, Jasti and Tapash K, editors. Theory and Practice of Contemporary Pharmaceutics, Ghosh, CRC Press; 2004. p. 479–524.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to acknowledge Dr. Mark Prichard at The University of Alabama at Birmingham (UAB) for conducting the in vitro antiviral screening studies under NIH/NIAID contract. Also, we would like to thank Dr. Christopher Tseng and Miriam Perkins at National Institute of Allergy and Infectious Diseases (NIAID) for their support. This work has been supported by NIH grant R01EY009171. All these prodrugs are currently under investigation by NIH/NIAID for screening the in vivo antiviral efficacy in virus infected animal models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vadlapudi, A.D., Vadlapatla, R.K., Earla, R. et al. Novel Biotinylated Lipid Prodrugs of Acyclovir for the Treatment of Herpetic Keratitis (HK): Transporter Recognition, Tissue Stability and Antiviral Activity. Pharm Res 30, 2063–2076 (2013). https://doi.org/10.1007/s11095-013-1059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1059-7

KEY WORDS

Navigation