Pharmaceutical Research

, Volume 30, Issue 8, pp 2063–2076 | Cite as

Novel Biotinylated Lipid Prodrugs of Acyclovir for the Treatment of Herpetic Keratitis (HK): Transporter Recognition, Tissue Stability and Antiviral Activity

  • Aswani Dutt Vadlapudi
  • Ramya Krishna Vadlapatla
  • Ravinder Earla
  • Suman Sirimulla
  • Jake Brain Bailey
  • Dhananjay Pal
  • Ashim K. Mitra
Research Paper



Biotinylated lipid prodrugs of acyclovir (ACV) were designed to target the sodium dependent multivitamin transporter (SMVT) on the cornea to facilitate enhanced cellular absorption of ACV.


All the prodrugs were screened for in vitro cellular uptake, interaction with SMVT, docking analysis, cytotoxicity, enzymatic stability and antiviral activity.


Uptake of biotinylated lipid prodrugs of ACV (B-R-ACV and B-12HS-ACV) was significantly higher than biotinylated prodrug (B-ACV), lipid prodrugs (R-ACV and 12HS-ACV) and ACV in corneal cells. Transepithelial transport across rabbit corneas indicated the recognition of the prodrugs by SMVT. Average Vina scores obtained from docking studies further confirmed that biotinylated lipid prodrugs possess enhanced affinity towards SMVT. All the prodrugs studied did not cause any cytotoxicity and were found to be safe and non-toxic. B-R-ACV and B-12HS-ACV were found to be relatively more stable in ocular tissue homogenates and exhibited excellent antiviral activity.


Biotinylated lipid prodrugs demonstrated synergistic improvement in cellular uptake due to recognition of the prodrugs by SMVT on the cornea and lipid mediated transcellular diffusion. These biotinylated lipid prodrugs appear to be promising drug candidates for the treatment of herpetic keratitis (HK) and may lower ACV resistance in patients with poor clinical response.


acyclovir cornea antiviral activity herpetic keratitis SMVT 













Epstein - Barr virus


Human corneal epithelial cells


Human cytomegalovirus


Herpetic keratitis


Herpes simplex virus


Liquid chromatography-tandem mass spectrometry




Rabbit primary corneal epithelial cells


Sodium dependent multivitamin transporter



We would like to acknowledge Dr. Mark Prichard at The University of Alabama at Birmingham (UAB) for conducting the in vitro antiviral screening studies under NIH/NIAID contract. Also, we would like to thank Dr. Christopher Tseng and Miriam Perkins at National Institute of Allergy and Infectious Diseases (NIAID) for their support. This work has been supported by NIH grant R01EY009171. All these prodrugs are currently under investigation by NIH/NIAID for screening the in vivo antiviral efficacy in virus infected animal models.


  1. 1.
    Duan R, de Vries RD, Osterhaus AD, Remeijer L, Verjans GM. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis. 2008;198(5):659–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Remeijer L, Osterhaus A, Verjans G. Human herpes simplex virus keratitis: the pathogenesis revisited. Ocul Immunol Inflamm. 2004;12(4):255–85.PubMedCrossRefGoogle Scholar
  3. 3.
    Rowe AM, St. Leger AJ, Jeon S, Dhaliwal DK, Knickelbein JE, Hendricks RL. Herpes keratitis. Progress in Retinal and Eye Research. 2013;32(0):88–101.PubMedCrossRefGoogle Scholar
  4. 4.
    Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother. 2011;55(2):459–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, et al. Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA. 2006;296(8):964–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Dujaili LJ, Clerkin PP, Clement C, McFerrin HE, Bhattacharjee PS, Varnell ED, et al. Ocular herpes simplex virus: how are latency, reactivation, recurrent disease and therapy interrelated? Future Microbiol. 2011;6(8):877–907.PubMedCrossRefGoogle Scholar
  7. 7.
    Webre JM, Hill JM, Nolan NM, Clement C, McFerrin HE, Bhattacharjee PS, et al. Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases. J Biomed Biotechnol. 2012;2012:612316.PubMedCrossRefGoogle Scholar
  8. 8.
    Vadlapudi AD, Vadlapatla RK. Mitra AK. Update On Emerging Antivirals For The Management Of Herpes Simplex Virus Infections: A Patenting Perspective. Recent Pat Antiinfect Drug Discov. 2013;8(1):55–67.Google Scholar
  9. 9.
    Kennedy DP, Clement C, Arceneaux RL, Bhattacharjee PS, Huq TS, Hill JM. Ocular herpes simplex virus type 1: is the cornea a reservoir for viral latency or a fast pit stop? Cornea. 2011;30(3):251–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Kennedy DP, Clement C, Arceneaux RL, Bhattacharjee PS, Huq TS, Hill JM. Ocular Herpes Simplex Virus Type 1: Is the Cornea a Reservoir for Viral Latency or a Fast Pit Stop? Cornea. 2010. doi: 10.1097/01.ico.0000391265.52134.f0
  11. 11.
    Cantin EM, Chen J, McNeill J, Willey DE, Openshaw H. Detection of herpes simplex virus DNA sequences in corneal transplant recipients by polymerase chain reaction assays. Curr Eye Res. 1991;10(Suppl):15–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Easty DL, Shimeld C, Claoue CM, Menage M. Herpes simplex virus isolation in chronic stromal keratitis: human and laboratory studies. Curr Eye Res. 1987;6(1):69–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Coupes D, Klapper PE, Cleator GM, Bailey AS, Tullo AB. Herpesvirus simplex in chronic human stromal keratitis. Curr Eye Res. 1986;5(10):735–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Tullo AB, Easty DL, Shimeld C, Stirling PE, Darville JM. Isolation of herpes simplex virus from corneal discs of patients with chronic stromal keratitis. Trans Ophthalmol Soc U K. 1985;104(Pt 2):159–65.PubMedGoogle Scholar
  15. 15.
    Shimeld C, Tullo AB, Easty DL, Thomsitt J. Isolation of herpes simplex virus from the cornea in chronic stromal keratitis. Br J Ophthalmol. 1982;66(10):643–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Thuret G, Acquart S, Gain P, Dumollard JM, Manissolle C, Campos-Guyotat L, et al. Ultrastructural demonstration of replicative herpes simplex virus type 1 transmission through corneal graft. Transplantation. 2004;77(2):325–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Remeijer L, Maertzdorf J, Doornenbal P, Verjans GM, Osterhaus AD. Herpes simplex virus 1 transmission through corneal transplantation. Lancet. 2001;357(9254):442.PubMedCrossRefGoogle Scholar
  18. 18.
    Openshaw H, McNeill JI, Lin XH, Niland J, Cantin EM. Herpes simplex virus DNA in normal corneas: persistence without viral shedding from ganglia. J Med Virol. 1995;46(1):75–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaufman HE, Azcuy AM, Varnell ED, Sloop GD, Thompson HW, Hill JM. HSV-1 DNA in tears and saliva of normal adults. Invest Ophthalmol Vis Sci. 2005;46(1):241–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Abiko Y, Ikeda M, Hondo R. Secretion and dynamics of herpes simplex virus in tears and saliva of patients with Bell’s palsy. Otol Neurotol. 2002;23(5):779–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Yamamoto S, Shimomura Y, Kinoshita S, Nishida K, Yamamoto R, Tano Y. Detection of herpes simplex virus DNA in human tear film by the polymerase chain reaction. Am J Ophthalmol. 1994;117(2):160–3.PubMedGoogle Scholar
  22. 22.
    Uchoa UB, Rezende RA, Carrasco MA, Rapuano CJ, Laibson PR, Cohen EJ. Long-term acyclovir use to prevent recurrent ocular herpes simplex virus infection. Arch Ophthalmol. 2003;121(12):1702–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Liesegang TJ. Herpes simplex virus epidemiology and ocular importance. Cornea. 2001;20(1):1–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Anand BS, Mitra AK. Mechanism of corneal permeation of L-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm Res. 2002;19(8):1194–202.PubMedCrossRefGoogle Scholar
  25. 25.
    Bacon TH, Levin MJ, Leary JJ, Sarisky RT, Sutton D. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev. 2003;16(1):114–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol. 2003;26(1):29–37.PubMedCrossRefGoogle Scholar
  27. 27.
    Choong K, Walker NJ, Apel AJ, Whitby M. Aciclovir-resistant herpes keratitis. Clin Experiment Ophthalmol. 2010;38(3):309–13.PubMedGoogle Scholar
  28. 28.
    Wilson SS, Fakioglu E, Herold BC. Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti Infect Ther. 2009;7(5):559–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Vadlapudi AD, Vadlapatla RK, Kwatra D, Earla R, Samanta SK, Pal D, et al. Targeted lipid based drug conjugates: A novel strategy for drug delivery. Int J Pharm. 2012;434(1–2):315–24.PubMedCrossRefGoogle Scholar
  30. 30.
    Karla PK, Quinn TL, Herndon BL, Thomas P, Pal D, Mitra A. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux. J Ocul Pharmacol Ther. 2009;25(2):121–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Functional and Molecular Aspects of Biotin Uptake via SMVT in Human Corneal Epithelial (HCEC) and Retinal Pigment Epithelial (D407) Cells. AAPS J. 2012;14(4):832–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Janoria KG, Hariharan S, Paturi D, Pal D, Mitra AK. Biotin uptake by rabbit corneal epithelial cells: role of sodium-dependent multivitamin transporter (SMVT). Curr Eye Res. 2006;31(10):797–809.PubMedCrossRefGoogle Scholar
  33. 33.
    Dey S, Patel J, Anand BS, Jain-Vakkalagadda B, Kaliki P, Pal D, et al. Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci. 2003;44(7):2909–18.PubMedCrossRefGoogle Scholar
  34. 34.
    Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725–38.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang Y. I-TASSER: fully automated protein structure prediction in CASP8. Proteins. 2009;77 Suppl 9:100–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 2008;9:40.CrossRefGoogle Scholar
  37. 37.
    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61.PubMedGoogle Scholar
  38. 38.
    Katragadda S, Talluri RS, Mitra AK. Simultaneous modulation of transport and metabolism of acyclovir prodrugs across rabbit cornea: An approach involving enzyme inhibitors. Int J Pharm. 2006;320(1–2):104–13 [Comparative Study Research Support, N.I.H., Extramural].PubMedCrossRefGoogle Scholar
  39. 39.
    Tak RV, Pal D, Gao H, Dey S, Mitra AK. Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line. J Pharm Sci. 2001;90(10):1505–15 [Comparative Study Research Support, U.S. Gov't, P.H.S.].PubMedCrossRefGoogle Scholar
  40. 40.
    Earla R, Boddu SH, Cholkar K, Hariharan S, Jwala J, Mitra AK. Development and validation of a fast and sensitive bioanalytical method for the quantitative determination of glucocorticoids–quantitative measurement of dexamethasone in rabbit ocular matrices by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal. 2010;52(4):525–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Prichard MN, Keith KA, Quenelle DC, Kern ER. Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob Agents Chemother. 2006;50(4):1336–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Prichard MN, Daily SL, Jefferson GM, Perry AL, Kern ER. A rapid DNA hybridization assay for the evaluation of antiviral compounds against Epstein-Barr virus. J Virol Methods. 2007;144(1–2):86–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Gill RB, Frederick SL, Hartline CB, Chou S, Prichard MN. Conserved retinoblastoma protein-binding motif in human cytomegalovirus UL97 kinase minimally impacts viral replication but affects susceptibility to maribavir. Virol J. 2009;6:9.PubMedCrossRefGoogle Scholar
  44. 44.
    Dias CS, Anand BS, Mitra AK. Effect of mono- and di-acylation on the ocular disposition of ganciclovir: physicochemical properties, ocular bioreversion, and antiviral activity of short chain ester prodrugs. J Pharm Sci. 2002;91(3):660–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Lambert DM. Rationale and applications of lipids as prodrug carriers. Eur J Pharm Sci. 2000;11 Suppl 2:S15–27.PubMedCrossRefGoogle Scholar
  46. 46.
    Chang SC, Lee VH. Influence of chain length on the in vitro hydrolysis of model ester prodrugs by ocular esterases. Curr Eye Res. 1982;2(10):651–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Talluri RS, Hariharan S, Karla PK, Mitra AK. Drug delivery to cornea and conjunctiva-esterase and protease directed prodrug design. In: Dartt DA, Bex P, D’Amore P, Dana R, Mcloon L & Niederkorn J, editors. Ocular Periphery and Disorders. San Deigo, California, USA: Elsevier, Academic Press Elsevier Ltd; 2011. p. 303–314.Google Scholar
  48. 48.
    Atluri H, Tirucherai GS, Dias CS, Patel J, Mitra AK. Ocular, Nasal, Pulmonary, and Otic Routes of Drug Delivery. In: Bhaskara R, Jasti and Tapash K, editors. Theory and Practice of Contemporary Pharmaceutics, Ghosh, CRC Press; 2004. p. 479–524.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Aswani Dutt Vadlapudi
    • 1
  • Ramya Krishna Vadlapatla
    • 1
  • Ravinder Earla
    • 1
  • Suman Sirimulla
    • 2
  • Jake Brain Bailey
    • 2
  • Dhananjay Pal
    • 1
  • Ashim K. Mitra
    • 1
  1. 1.Division of Pharmaceutical Sciences, School of PharmacyUniversity of Missouri-Kansas CityKansas CityUSA
  2. 2.Department of Chemistry & BiochemistryNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations