Advertisement

Pharmaceutical Research

, Volume 30, Issue 5, pp 1458–1463 | Cite as

Emerging Topics in Structure-Based Virtual Screening

  • Giulio Rastelli
Perspective

ABSTRACT

Molecular dynamics simulations and the generation of ad hoc chemical libraries are playing an increasingly important and recognized role in structure-based virtual screening. These approaches are important for treating target flexibility and improving the drug discovery pipeline. In this article I will comment on these two topics and put them into perspective.

KEY WORDS

ADMET drug discovery molecular dynamics structure-based virtual screening virtual screening 

ABBREVIATIONS

ADMET

adsorption, distribution, metabolism, excretion, toxicity

MM-GBSA

molecular mechanics Generalized Born surface area

MM-PBSA

molecular mechanics Poisson Boltzmann surface area

SBVS

structure-based virtual screening

REFERENCES

  1. 1.
    Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004;3(11):935–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Ripphausen P, Nisius B, Peltason L, Bajorath J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem. 2010;53(24):8461–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng T, Li X, Li Y, Liu Z, Wang R. Comparative assessment of scoring functions on a diverse test set. J Chem Inform Model. 2009;49(4):1079–93.CrossRefGoogle Scholar
  4. 4.
    Waszkowycz B. Towards improving compound selection in structure-based virtual screening. Drug Disc Today. 2008;13(5–6):219–26.CrossRefGoogle Scholar
  5. 5.
    Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K. Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem. 2011;32(4):742–55.CrossRefPubMedGoogle Scholar
  6. 6.
    Šink R, Gobec S, Pečar S, Zega A. False positives in the early stages of drug discovery. Curr Med Chem. 2010;17(34):4231–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Coan KED, Shoichet BK. Stoichiometry and physical chemistry of promiscuous aggregate-based inhibitors. J Am Chem Soc. 2008;130(29):9606–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Michel J, Essex JW. Prediction of protein-ligand binding affinity by free energy simulations: assumptions, pitfalls and expectations. J Comput-Aid Mol Des. 2010;24(8):639–58.CrossRefGoogle Scholar
  9. 9.
    Jorgensen WL Efficient drug lead discovery and optimization. Acc Chem Res. 2009; 42(6):724-733Google Scholar
  10. 10.
    Parenti MD, Rastelli G. Advances and applications of binding affinity prediction methods in drug discovery. Biotechnol Adv. 2012;30(1):244–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Rastelli G, Del Rio A, Degliesposti G, Sgobba M. Fast and accurate predictions of relative binding free energies using MM-PBSA and MM-GBSA. J Comp Chem. 2010;31(4):797–810.Google Scholar
  12. 12.
    Degliesposti G, Portioli C, Parenti MD, Rastelli G. BEAR, a novel virtual screening methodology for drug discovery. J Biomol Screen. 2011;16(1):129–33.CrossRefPubMedGoogle Scholar
  13. 13.
    Totrov M, Abagyan R. Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol. 2008;18(2):178–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Ferrari AM, Wei BQ, Costantino L, Shoichet BK. Soft docking and multiple receptor conformations in virtual screening. J Med Chem. 2004;47(21):5076–84.CrossRefPubMedGoogle Scholar
  15. 15.
    Kirchmair J, Distinto S, Schuster D, Spitzer G, Langer T, Wolber G. Enhancing drug discovery through in silico screening: strategies to increase true positives retrieval rates. Curr Med Chem. 2008;15(20):2040–53.CrossRefPubMedGoogle Scholar
  16. 16.
    Polgár T, Baki A, Szendrei GI, Keseru GM. Comparative virtual and experimental high-throughput screening for glycogen synthase kinase-3beta inhibitors. J Med Chem. 2005;48(25):7946–59.CrossRefPubMedGoogle Scholar
  17. 17.
    Rao S, Sanschagrin PC, Greenwood JR, Repasky MP, Sherman W. Farid R Improving database enrichment through ensemble docking. J Comput Aided Mol Des. 2008;22(9):621–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Bowman AL, Nikolovska-Coleska Z, Zhong H, Wang S, Carlson HA. Small molecule inhibitors of the MDM2-p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc. 2007;129(42):12809–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Sgobba M, Caporuscio F, Anighoro A, Portioli C, Rastelli G. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur J Med Chem. 2012;58:431-440.Google Scholar
  20. 20.
    Wang W, Donini O, Reyes CM, Kollman PA. Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct. 2001;30:211-243.Google Scholar
  21. 21.
    Karplus M, Mc Cammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol. 2002;9(9):646–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Amaro RE, Baron R, McCammon JA. An improved relaxed complex scheme for receptor flerxibility in computer-aided drug design. J Comput Aided Mol Des. 2008;22(9):693–705.CrossRefPubMedGoogle Scholar
  23. 23.
    Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol Inf. 2012;31:114–22.CrossRefGoogle Scholar
  24. 24.
    Liwo A, Czaplewski C, Ołdziej S, Scheraga HA. Computational techniques for efficient conformational sampling of proteins. Curr Opin Struct Biol. 2008;18:134–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Wang J, Cieplak P, Li J, Wang J, Cai Q, Hsieh M, et al. Development of polarizable models for molecular mechanical calculations II: Induced dipole models significantly improve accuracy of intermolecular interaction energies. J Phys Chem B. 2001;115(12):3100–11.CrossRefGoogle Scholar
  26. 26.
    Schaeffer RD, Fersht A, Daggett V. Combining experiment and simulation in protein folding: closing the gap for small model systems. Curr Opin Struct Biol. 2008;18(1):4–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Putnam CD, Hammel M, Hura GL, Tainer JA. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys. 2007;40(3):191–285.CrossRefPubMedGoogle Scholar
  28. 28.
    Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65(3):712–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Klepeis JL, Lindorff-Larsen K, Odror R, Shaw DE. Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol. 2009;19:120–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Damm KL, Carlson HA. Exploring experimental sources of multiple protein conformations in structure-based drug design. J Am Chem Soc. 2007;129(26):8225–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Williams AJ, Ekins S, Tkachenko V. Towards a gold standard: regarding quality in public domain chemistry databases and approaches to improving the situation. Drug Discov Today. 2012;17(13/14):685–701.CrossRefPubMedGoogle Scholar
  32. 32.
    Nicola G, Liu T, Gilson MK. Public domain databases for medicinal chemistry. J Med Chem. 2012;55(16):6987–7002.CrossRefPubMedGoogle Scholar
  33. 33.
    Irwin JJ, Shoichet BK. ZINC – A free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177–82.CrossRefPubMedGoogle Scholar
  34. 34.
    Vainio MJ, Kogej T, Raubacher F. Automated recycling of chemistry for virtual screening and library design. J Chem Inf Model. 2012;52:1777–86.CrossRefGoogle Scholar
  35. 35.
    Hu Q, Peng Z, Kostrowicki J, Kubi A. LEAP into the Pfizer global virtual library (PGVL) space: creation of readily synthesizable design ideas automatically. In: Zhou JZ, editor. Chemical library design. Methods in molecular biology, vol. 685. New York: Humana Press; 2011. p. 253–76.CrossRefGoogle Scholar
  36. 36.
    Caporuscio F, Tafi A. Pharmacophore modeling: a forty year old approach and its modern synergies. Curr Med Chem. 2011;18(17):2543–53.CrossRefPubMedGoogle Scholar
  37. 37.
    Heinke R, Spannhoff A, Meier R, Trojer P, Bauer I, Jung M, et al. Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem. 2009;4(1):69–77.CrossRefPubMedGoogle Scholar
  38. 38.
    Knox AJS, Price T, Pawlak M, Golfis G, Flood CT, Fayne D, et al. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin. J Med Chem. 2009;52(8):2177–80.CrossRefPubMedGoogle Scholar
  39. 39.
    Rastelli G, Pacchioni S, Sirawaraporn W, Sirawaraporn R, Parenti MD, Ferrari AM. Docking and database screening reveal new classes of Plasmodium falciparum dihydrofolate reductase inhibitors. J Med Chem. 2003;46(14):2834–45.CrossRefPubMedGoogle Scholar
  40. 40.
    Langer T. Pharmacophores in drug research. Mol Inform. 2010;29(6–7):470–5.CrossRefGoogle Scholar
  41. 41.
    Shangary S, Wang S. Small-molecule inhibitors of the MDM2-p53 protein-protein interaction to reactivate p53 function: a novel approach for cancer therapy. Annu Rev Pharmacol Toxicol. 2009;49:223–41.CrossRefPubMedGoogle Scholar
  42. 42.
    Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat Rev Drug Discov. 2007;6(6):464–79.CrossRefPubMedGoogle Scholar
  43. 43.
    Gleeson MP, Hersey A, Montanari D, Overington J. Probing the links between in vitro potency, ADMET and physicochemical parameters. Nat Rev Drug Discov. 2010;10(3):197–208.CrossRefGoogle Scholar
  44. 44.
    Chuprina A, Lukin O, Demoiseaux R, Buzko A, Shivanyuk A. Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers. J Chem Inf Model. 2010;50(4):470–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Sutherland JJ, Raymond JW, Stevens JL, Baker TK, Watson DE. Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem. 2012;55(4):6455–66.CrossRefPubMedGoogle Scholar
  46. 46.
    Kortagere S, Ekins S. Troubleshooting computational methods in drug discovery. J Pharmacol Toxicol Methods. 2010;61(2):67–75.CrossRefPubMedGoogle Scholar
  47. 47.
    Muthas D, Boyer S. Exploiting pharmacological similarity to identify safety concerns – listen to what the data tells you. Mol Inform. 2013;32(1):37–45.CrossRefGoogle Scholar
  48. 48.
    Taboureau O, Baell JB, Fernández-Recio J, Villoutreix BO. Established and emerging trends in computational drug discovery in the structural genomics era. Chem Biol. 2012;19(1):29–41.CrossRefPubMedGoogle Scholar
  49. 49.
    Keiser MJ, Setola V, Irwin JJ, Laggner C, Abbas AI, Hufeisen SJ, et al. Predicting new molecular targets for known drugs. Nature. 2009;462(7270):175–81.CrossRefPubMedGoogle Scholar
  50. 50.
    Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Pinilla C. Visualization of the chemical space in drug discovery. Curr Comput-Aided Drug Des. 2008;4(4):322–33.CrossRefGoogle Scholar
  51. 51.
    Manly CJ, Chandrasekhar J, Ochterski JW, Hammer JD, Warfield BB. Strategies and tactics for optimizing the Hit-to-Lead process and beyond–a computational chemistry perspective. Drug Discov Today. 2008;13(3–4):99–109.CrossRefPubMedGoogle Scholar
  52. 52.
    Nielsen TE, Schreiber SL. Towards the optimal screening collection: a synthesis strategy. Angew Chem Int Ed. 2008;47(1):48–56.CrossRefGoogle Scholar
  53. 53.
    Dandapani S, Marcaurelle LA. Current strategies for diversity-oriented synthesis. Curr Opin Chem Biol. 2010;14(3):362–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Life Sciences DepartmentUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations